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ABSTRACT

Active camera relocalization (ACR) focuses on dynamically
and physically relocating camera to a previous pose, effec-
tively supporting many applications in computer vision and
robotics, such as automated picking and stowing, fine-grained
change detection. Previous work [1] uses barely 2D images to
realize ACR, bringing about unknown translation scale prob-
lem. To solve this problem, they use bisection approach to
guess translation scale, which leads to reciprocating motion
and slows down the convergence process. In this paper, we
utilize additional depth information from an RGBD camera
to solve the real translation scale problem. Via iteratively and
sequentially adjusting 3D translation and rotation, our ACR
approach greatly reduces the iteration number and speeding
up the process. To cope with imprecise pose estimation and
achieve high relocalization accuracy, we propose a bounding
strategy to restrict camera motion. Experiments validate the
proposed method is much efficient and its accuracy is on par
with previous ACR method.

Index Terms— Active camera relocalization, Depth cam-
era, Camera pose estimation, Hand-eye calibration

1. INTRODUCTION

Active camera relocalization (ACR), which focuses on es-
timating camera pose from 2D or 3D images and actively
recurring it, is one of the important problems in computer
vision and robotics [2, 3, 4, 5], but is not yet studied ex-
tensively. Most previous work focuses on camera pose es-
timation, which is also referred to as camera registration,
ego-motion estimation, camera (re-)localization, or camera
regression in different literatures. However, camera pose es-
timation only concerns statically estimate the camera pose
in a known reference coordinate which is defined by another
camera pose or by a 3D scene constructed from SfM [6, 7],
SLAM [8, 9, 10]. In this paper, as shown in Fig. 1, we treat
camera relocalization as the process of dynamically and phys-
ically relocating the camera to a target pose of the single 2D
reference image, beyond merely estimating the relative pose.

†W. Feng is the corresponding author. Email: wfeng@tju.edu.cn. ∗The
first two authors are joint first author, who equally contribute to this work.
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Fig. 1. Comparision of the proposed ACR-D with ACR-B [1].
ACR-D has comparable relocalizaton accuracy (by AFD value and
difference image in the left-bottom), and what is more, as shown
in camera trajectory, ACR-D (red) needs much fewer iterations and
avoids detours compared with ACR-B (green).

Comparing with just estimating camera pose, physically
relocating to original camera pose can benefit many applica-
tions in computer vision and robotics. One application is au-
tomated picking and stowing. As pointed out by the Amazon
Robotics Challenge committee [11], viable automated pick-
ing and stowing in unstructured environments still remains a
difficult challenge. ACR can play a key role in driving the
robot arm to a known good position for picking and stow-
ing using an eye-in-hand system. Another application is fine-
grained change detection [4] which aims to accurately detect
very minute changes. This requires two-time captured im-
ages are well aligned. Existing image-align methods [12,
13] can lead to unreal distortions which result in unreliable
change detection. However, we can obtain highly and physi-
cally aligned images by ACR, thus provide a much more ro-
bust and accurate solution for fine-grained change detection.

Our paper builds on an existing ACR method [1]. We
both wish to precisely relocate the camera to reference pose.
Different from us, that work uses a normal RGB camera as
the input source. By applying 5-points algorithm [14] for
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relative pose estimation, it iteratively adjusts the camera to
reach reference pose. However, with only 2D input images,
there exists the unknown translation scale problem for pose
estimation. To address it, they design a bisection strategy to
gradually approach actual real translation magnitude. The bi-
section method truly works in their situation, yet it leads to
reciprocating motion and slows down the convergence pro-
cess. In this work, we utilize additional depth information
from an RGBD camera (ZED stereo camera) and estimate the
camera pose with real translation scale. Thus the proposed
method greatly speeds up the convergence process and can
get comparable relocalization accuracy compared with [1]. In
addition, without losing generality and make our method be
applicable to existing 2D images, we also take an RGB im-
age as the reference image and estimate the relative pose by
EPnP [15] with 2D-3D correspondences. For a clear descrip-
tion, we refer the existing ACR approach [1] as ACR-B, and
the proposed method in this paper as ACR-D.

Ideally and theoretically, when relative camera pose is es-
timated by PnP methods, we can just move the camera by an
inverse camera pose in one shot to finish relocalization. How-
ever, there exist two challenges that make one-shot relocal-
ization unpractical. C1: Unknown hand-eye calibration prob-
lem [16, 17, 18]. Since camera motion is actually executed by
the hand (motion platform) and there is a displacement X be-
tween camera coordinate A and the hand coordinate B which
satisfies AX = XB. With unknown hand-eye calibration X,
we cannot get precise hand motion merely from the estimated
camera pose. However, existing hand-eye calibration is com-
plicated and not reliable which limits the application of ACR
on a common device that is often disassembled/reassembled.
C2: The estimated pose is often not precise enough, thus
one-shot relocalization cannot lead to the desirable result. In
reality, various noise e.g. image noise, matching error and
computation noise etc. can make this problem more severe,
even with state-of-the-art pose estimation methods and bun-
dle adjustment. In this paper, we deal with challenge C1 by
iteratively adjustment and give rigid convergence proof based
on [1]. To address challenge C2, we propose a bounding strat-
egy to limit camera motion in each iteration.

There are several works related to our ACR methods. One
of them is computational re-photography [19, 20]. Rephotog-
raphy is often used for the study of history, such as urban
change [21] or geological erosion [22] over time. It aims to
recapture an existing photograph from the same viewpoint.
However, since it cares mostly about a large scene and great
changes, its relocalization accuracy is very low. Besides, ex-
isting method [20] only physically recurs 3D translation and
the rotation is wrapped by a homography transformation. In
contrast, we realize 6D camera relocalization with high ac-
curacy. Another close research topic is visual servoing in
robotics [2, 23, 24]. It does similar thing in restricted en-
vironments and uses manual marks as feature points and its
precision highly relies on hand-eye calibration. Thus it is not

applicable on a common platform and natural scene. On the
contrary, our method is hand-eye calibration free and can be
used in many common motion platforms.

Our major contributions are three-fold. First, we propose
an active camera relocalization method with RGBD camera to
dynamically and physically relocate camera into the previous
pose with high accuracy. Compared with existing ACR-B,
the proposed method greatly speeds up the convergence pro-
cess with comparable relocalization accuracy. Second, based
on [1], we give rigid convergence analysis and prove the cam-
era pose can converge well without hand-eye calibration in an
easy-to-realize condition. Third, we propose a bounding strat-
egy for camera motion and eliminate the effect of imprecise
pose estimation problem.

2. PROBLEM FORMULATION

We can express camera or hand pose by a 3D rotation R ∈
SO(3) and a 3D translation t ∈ R3, and it belongs to the
special Euclidean group SE(3). In this paper, we use P '
〈R, t〉 to indicate the equivalence of the two representations,
where P ∈ SE(3) represents a camera or hand pose. We use
PA and PB to represent camera and hand pose respectively.

In ACR, we want to dynamically and physically relocate
the camera from initial pose P0

A to reference pose Pref
A . Cor-

respondingly, we need to move the hand from initial pose P0
B

to reference pose Pref
B . Following [1], we assume reference

eye and hand coordinate being the world coordinate of eye
and hand respectively, i.e., Pref

A = I and Pref
B = I. As de-

scribed above, the hand-eye relation is

PAX = XPB, (1)

where X ' 〈RX, tX〉 is hand-eye relative pose [16, 17].
Since physical motion is executed by hand, without known
hand-eye relative pose X (challenge C1), we cannot obtain
precise corresponding hand motion. Moreover, the estimated
camera pose is not accurate (challenge C2). Thus we can-
not realize one-shot camera relocation in practice. A feasible
solution is gradually adjusting the camera to approach refer-
ence pose. Thus ACR will find and execute a series of “rea-
sonable” hand motions to achieve equivalent effect of moving
hand from P0

B to reference Pref
B = I, we have

P0
B =

n∏
i=0

Ṗi
B = Ṗ0

BṖ1
B · · · Ṗi

B · · · Ṗn−1
B Ṗn

B, (2)

where Ṗi
B is relative hand pose corresponding to ith motion.

With hand being gradually relocated from P0
B to reference,

we can precisely relocate the camera from initial pose P0
A to

reference pose Pref
A = I, thus the ACR is completed.

In the following, we will prove by just guessing hand-
eye calibration X with Ẋ = I, this iterative ACR approach
will finally lead to convergence. Let us first assume we can
estimate ideal camera pose Pi

A at i iteration. By Eq. (1), we
have ideal hand relative pose Pi

B = X−1Pi
AX. Since X is

unknown and we guess X by Ẋ = I, then we can obtain ith
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Fig. 2. Working flow of the proposed ACR algorithm.

“guessed” hand relative pose Ṗi
B = Ẋ−1Pi

AẊ = Pi
A and

corresponding hand motion Ṁi
B = (Ṗi

B)
−1. It actually leads

to ith camera motion Ṁi
A = XṀi

BX−1 = X(Pi
A)

−1X−1,
and camera moves from Pi

A to Pi+1
A , we have

Pi+1
A = Ṁi

APi
A = X(Pi

A)
−1X−1Pi

A. (3)

Eq. (3) gives the actual camera pose relation before and after
i-th motion. We can split Eq. (3) into rotation and translation
parts, which yields

Ri+1
A = RX(R

i
A)

−1R−1
X Ri

A, (4)

ti+1
A = RX(R

i
A)

−1(R−1
X tiA − tiA)

+ [I−RX(R
i
A)

−1R−1
X ]tX.

(5)

As proved by ACR-B [1], if θX ≤ π
3 , with enough ACR

iterations, the rotation Ri
A will gradually reduce to I. Since

our translation portion is different to ACR-B, here we give
strict proof of tA convergence in Theorem 1.

Theorem 1 (tA convergence). When eye relative rotation Ri
A

converges to I, if θX < π
3 , with enough iterations, ‖tiA‖ fi-

nally converges to zero.

Proof. When eye relative rotation Ri
A converges to I, Eq. (5)

can be reduced to

ti+1
A = tiA −RXtiA, (6)

Using axis-angle representation, we have RX ' 〈θX, ēX〉.
Then by Rodrigues’ formula,

ti+1
A = tiA − [cos θXtiA + sin θX(ēX × tiA)

+ (1− cos θX)(ēX · tiA)ēX].
(7)

We measure ‖ti+1
A ‖ by

‖ti+1
A ‖

2 = ti+1
A · ti+1

A

= 2‖tiA‖2(1− cos θX)[1− (ēX · t̄iA)2]
≤ 2‖tiA‖2(1− cos θX),

(8)

by mathematical induction, we can get

‖tnA‖2 ≤ ‖t0A‖2[2(1− cos θX)]
n, (9)

If θX < π
3 , 0 ≤ 2(1 − cos θX) < 1, with enough large n,

we have [2(1 − cos θX)]
n → 0, so ‖tnA‖2 → 0. That is, with

enough iterations, ‖tiA‖ finally converges to zero.

3. THE METHOD

We have proved by just guessing hand-eye calibration X with
Ẋ = I and if θX < π

3 , after RA convergence, tA will finally
reduce to zeros. So we can provide a strategy that adjusts the
rotation to convergence in the first stage and then iteratively
adjusts translation in the second stage. However, this strat-
egy requires the mechanical rotation and translation are sig-
nificantly independent. To speed up the process and get high
accuracy, similar to ACR-B [1], we jointly adjust rotation and
translation in each iteration. Moreover, to handle the impre-
cise camera pose estimation problem, we propose a bounding
strategy to limit the motion to be smaller and smaller. Specif-
ically, given an initial boundary 〈φ = φ0, τ = τ0〉, we reduce
the boundary by a ratio of λ ∈ (0, 1) until it reaches a minimal
value 〈φmin, τmin〉, where φ and τ are the respective upper
bound of rotation angle and translation size. Detailed work-
ing flow is shown in Fig. 2. Different from ACR-B method,
the proposed method does not require tA bisection since it
estimates real translation scale with RGBD image, thus ef-
ficiently improves convergence rate. The bounding strategy
makes the motion more accurate over time and improves the
robustness of relocalization. In practice, we set φ0 and τ0 as
two times of θ0A and ‖t0A‖ from camera pose estimation and λ
to be 0.8. Experiments validate the proposed method is much
more efficient and its accuracy is comparable to ACR-B.

4. EXPERIMENTS
4.1. Environments setup

Experiments are conducted in both virtual environments and
real world. Virtual environments are built on Unreal Engine 4
with UnrealCV [25] for interaction. It is ideal for proof-of-
concept since all the data are precise with little noise, and
fully controllable for repeatable tests. As for real world, we
use ZED camera for RGBD image capturing and a common
assembled 6D platform for motion. We use two recent meth-
ods for comparison, ACR-B [1] and ACR-H [4]. Between
them, ACR-H generate homography matrix and navigation
rectangles to guide user to relocate camera to reference.

All experiments use one single RGB image as reference
with default resolutions (640×480 for UnrealCV and 1280×
720 for ZED). The proposed method use depth information in
ACR process. In virtual environment, we set θX = 15◦ and
tX = [5, 5, 5] as hand-eye displacement. In real world, hand-
eye displacement is unknown and can be changed in different
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Fig. 3. Results of different ACR methods in three real-world scenes. Reference image, ACR image and difference image (× 5) with reference
by each method is shown. Depth maps are shown in left-bottom of ACR-D images.

i (iteration) i (iteration)
42 86 1210 14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ
er

ro
r 

(°
)

42 86 1210 14

0

1

2

3

4

5

6

t
er

ro
r 

(
)

c
m

(a) Relocalization error of ACR-D in virtual scenes.
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(b) Relocalization error of ACR-D in real world.

1 2 3 4 5 6 7 8

θ error (°) 0.0387 0.0240 0.0263 0.0244 0.0284 0.0171 0.0786 0.0391

t error ( )cm 0.0886 0.0761 0.0665 0.0533 0.1412 0.0701 0.0575 0.2326

1 2 3 4 5 6 7 8 9 10

θ error (°) 0.0065 0.0249 0.0019 0.0121 0.0044 0.0000 0.0202 0.0011 0.0137 0.0037

t error ( )mm 0.1645 0.0574 0.0693 0.0766 0.0621 0.1163 0.1236 0.0471 0.0540 0.0126

Fig. 4. Relocalization error of ACR-D in virtual scenes (a) and real
world (b), different experiments are distinguished by colors. The
table below shows the finally relocalization error.

ACR experiments. Following [1], we use AFD (average fea-
ture displacement) as criterion to evaluate ACR accuracy.
Table 1. Comparison of average AFD and variance of 3 methods.

Method ACR-H [4] ACR-B [1] ACR-D
AFD (avg) 15.8317 0.7963 0.7877
Variance 43.3824 0.0222 0.0858

Table 2. Comparison of iteration number of 9 real experiments.
Scene 1 Scene 2 Scene 3

ACR-B 14 15 15 12 13 14 10 14 15
ACR-D 6 7 5 6 5 4 4 4 5

4.2. Accuracy and convergence validation
To evaluate ACR accuracy and convergence in real world, we
set up 3 scenes and conduct 3 experiments for each scene (to-
tally 9 experiments). The average AFD value and variance
for each method are shown in Table. 1. Fig. 3 gives visual
ACR results and difference image with reference from three
different experiments. From Table. 1 and Fig. 3, we can see
the proposed ACR-D has achieve sub-pixel accuracy (AFD <

1) and very robust (small variance) and its accuracy is com-
parable with ACR-B and much better than ACR-H.

Table. 2 shows iteration numbers used in ACR-D com-
pared with ACR-B, from which we see the proposed ACR-
D use only 1

3.5 to 1
2.1 iterations of that in ACR-B. Thus the

proposed ACR-D methods has much faster convergence rate.
From these accuracy and convergence comparison, we can
draw a conclusion that the ACR-D speeds up the relocaliza-
tion considerably while keeps equivalent high accuracy.

4.3. Physical relocalization accuracy evaluation
To further evaluate the physical relocalization accuracy, we
conduct 8 experiments in one virtual scene and 10 experi-
ments in one real-world scene. For virtual scene, we can get
current and reference camera pose to compute relocalizaton
error at each iteration. For real-world scene, since ground
truth of camera pose is unknown, we use hand relocalization
error as evaluation. We first move hand by MGT, then con-
duct ACR and accumulate each hand motion till ith iteration
as Mi and use the difference between MGT and Mi as hand
relocalization error. Fig. 4 shows relocalization error change
of different ACR process. Physical rotation errors are less
than 0.04◦ in all experiments, and translation error is less than
2.40mm and 0.17mm in virtual and real-world scene. These
experiments indicates that our ACR-D method is very accu-
rate and robust in both virtual and real environments.

5. CONCLUSION

In this paper, we extend existing ACR algorithm to a more
efficient one by utilizing additional depth information from
RGBD camera. We rigidly prove convergence of the proposed
method without hand-eye calibration and propose a bounding
strategy for camera motion to reduce the estimated camera
pose error. Extensive experiments verify the convergence and
effectiveness of our approach. Our work can be naturally ex-
tended to benefit fine-grained change detection, visual robot
manipulation and many other applications. We hope our work
draws more attention of communities to the active computer
vision with robotics rather than just static and passive vision.
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