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ABSTRACT
In this study, we propose an efficient stereo matching

method which estimates sparse disparities using global phase
only correlation (POC). Conventionally, cost functions are to
be calculated for all disparity candidates and the associated
computational cost has been impediment in achieving a real-
time performance. Therefore, we consider to use full image
2D phase only correlation (FIPOC) for detecting the valid dis-
parities candidates. This would require comparatively fewer
calculations for the same number of disparities. Since, the
FIPOC output indicates the disparity distribution of two stereo
images, we can sort the disparity candidates and choose them
for sparse calculation. In our proposed method, the search-
able disparity range is half of the input image size, which is
much wider than that of the conventional methods. When we
apply the FIPOC to naive sum of absolute difference (SAD)
stereo matching method, the combined algorithm would re-
quire fewer calculations while maintaining the same accuracy.
In our evaluation, the proposed method achieves 194 disparity
stereo matching in 70 ms on 398 × 288 images without the
need for SIMD instruction, multi-thread operation, or addi-
tional hardware while using a Intel Core i5-5257U.

Index Terms— stereo matching, disparity, POC, sparse
search

1. INTRODUCTION

The field of stereo vision has gathered much attention in the
last few decades. Particularly, the recent demand for light-
weight stereo matching has increased due to the use of dual-
cameras in smartphones and automobile onboard camera.
Stereo vision requires an operation that estimates binocular
disparity among objects or background for obtaining the depth
information. To execute this operation, the stereo matching
algorithm calculates horizontal distance between correspond-
ing pixels in the stereo images, which is equal to the disparity.
The disparity map calculation can be grouped as local methods
and global methods. The local methods calculate the match-
ing cost of local patch by template matching.The following
three methods are mainly called as traditional local matching

methods; the sum of absolute difference (SAD) , the sum of
squared difference (SSD), and normalized cross correlation
(NCC). These local matching calculations are comparatively
faster than the global methods. Surveying the open litera-
ture shows that lot of research have been conducted in stereo
matching to seek fast and accurate technique [1–6]. Recently,
Convolutional Neural Network matching methods [5, 6] have
been used and they have achieved more accurate results with
GPU implementation.

On the other hand, the global method uses all the pixels
in the given image to obtain global features; graph cut [7] and
belief propagation [8] are listed as fundamental global meth-
ods. In these algorithms, pixels are considered as graph node,
and the object connectivity calculation is executed as solving
energy minimization problem. Additionally, cost aggregation
can be categorized to semi-global methods, which is executed
after the local calculations to optimize the disparity map by
computing energy of the limited connectivity [9]. Most of
the stereo matching methods take huge time; even naive SAD
takes few hundred milliseconds with CPU only calculation.

To reduce the amount of calculations, block matching
(BM) optimization methods have been proposed in the past
[10–14]. Summed Normalized Cross-Correlation method
(SNCC) [11] uses a box filter for effective acceleration, how-
ever, this results in shrinking of smaller objects. Profile
shape matching [12] can also reduce the BM calculation
with accuracy degradation. Recently, some methods using
1D-POC [15, 16] have been proposed for disparity optimiza-
tion [15]. 1D-POC can detect disparity of one or two objects
at a sub-pixel level, and it is unable to detect multiple objects.
Thus, the accuracy of 1D-POC drops when compared to SAD
in a usual stereo image. Yang et al. [16] use the POC for max-
imum and minimum disparity detection in cost aggregation
step, however, it requires about 61.77 seconds for processing.

Generally, in stereo matching algorithms, disparity candi-
dates are to be calculated. And, the number of calculations
depends on these disparity numbers. Thus, the order of arith-
metic operation becomes O(N × D) (N is a number of pixels
and D is the disparity range.) To overcome the limitation
based on the dependency, we propose a valid disparirty selec-
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Fig. 1. An outline of our method

tion using global POC. This process can detect the disparity
proportion of stereo images before local matching and achieves
the reduction of calculation of the disparity estimation while
maintaining the accuracy. Our selection technique can be ap-
plied to all local and semi-global methods, in this study, we
have evaluated the combination using naive SAD.

Our contributions can be summarized as follows:

• Obtaining the global feature of disparities using full-
image 2D POC (FIPOC).

• Sparse block matching based on valid disparities selec-
tion from FIPOC.

• High-efficiency calculation even when combined with
naive SAD.

2. PROPOSED METHOD

In this section, we will discuss in detail the Full-Image 2D
Phase Only Correlation (FIPOC) method which searches for
valid disparity candidates in stereo vision. Figure1 shows the
processing scheme of our method. It consists of three main
blocks which are the FIPOC, the disparity selection, and SAD
BM. In the FIPOC unit, DFT and IDFT calculations are com-
puted for obtaining the global disparity profile; the disparity
selection unit determines the valid disparities in descending
order. The SAD BM unit executes sparse BM operation us-
ing 7 × 7 pixel blocks based on selected disparities. In the
following subsections, we describe our proposed method.

2.1. Full Image Phase Only Correlation

Phase Only Correlation (POC) [17] was used to determine
the degree of similarity between two local patches. And by
using POC, an accurate sub-pixel stereo matching method was

proposed in [4]. The basic concept of POC function can be
described as follows: Given two input images f (x, y) and
g(x, y),of size (2N1+1, 2N2+1). The variables x and y are set
so that the center is always at the origin (0). In other words,
ranges of variables are −N1 ≥ x ≥ N1 and −N2 ≥ y ≥ N2.
POC operation starts with a 2D Discrete Fourier Transform
(2D-DFT). The output complex functions are the wavenumber
space represented by F(kx, ky) and G(kx, ky). And they are
given by Eq.(1).

F(kx, ky) = DFT( f (x, y)) G(kx, ky) = DFT(g(x, y)) (1)

The range of kx, ky is determined by DFT as follows: −N1 ≥
kx ≥ N1,−N2 ≥ ky ≥ N2. As they are complex functions,
they comprise amplitude and phase components. In order to
extract the phase component, the functions are divided by the
amplitude. Then a Hadamard product is calculated at each
wave number. Since they are complex functions, one must
be conjugate. We obtain normalized cross phase spectrum
Ĉ(kx, ky) using (Eq.(2)).

Ĉ(kx, ky) =
F(kx, ky)G(kx, ky)

|F(kx, ky)| |G(kx, ky)|
= exp

(
j(θF (kx, ky) − θG(kx, ky)

) (2)

In Eq.(2) G(kx, ky) represents the complex conjugate of the
function. The output of POC ĉ(x, y) is obtained by performing
discrete inverse Fourier transform (IDFT) on Ĉ(kx, ky).

ĉ(x, y) = IDFT(Ĉ(kx, ky)) (3)
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Fig. 2. Middlebury 4 stereo images [18]
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Fig. 3. Comparison with FIPOC (red), true disparity distribu-
tion (blue) and 1D-POC result (gray).

For simplicity, the processing from Eq.(1) to Eq.(3) is repre-
sented using the POC function.

ĉ(x, y) = POC( f (x, y), g(x, y)) (4)

When the image f (x, y) is described by translation of the image
g(x, y), the output of the POC function is a delta function with
the same parallel mobility.

f (x, y) = g(x − α, y − β))
POC( f (x, y), g(x, y)) = δ(x − α, y − β)

(5)

We propose Full Image 2D POC for stereo images by ex-
tending POC. We assume a model that is linearly independent
for each object in stereo images. This assumption can be
written mathematically as Eq.(6).

L f ull(x, y) =
N∑
i=0

Li(x, y) Rf ull(x, y) =
N∑
i=0

Ri(x, y)

Li(x, y) = Ri(x − di, y) di : disparity of object.

(6)

We will now perform a POC processing with full image as
the input window for POC. In this way, we can obtain an
independent delta function for each object (Eq.(7)).

POC(L(x, y), R(x, y)) =
N∑
i=0

piδ(x − di, y) (7)

The height of each delta function is represented by pi . It is
worth noting that the value of pi depends on the amount of
phase in object and not on the objects area size.

(b)Venus (d)Teddy

Fig. 4. Discussion points of output.
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Fig. 5. Disparity sorting method of our algorithm.

We now analyse our FIPOC method’s performance using
the Middlebury 4 stereo images (Fig.2) [18]. The FIPOC
results and ground truths are shown in Fig.3. The 1D-POC
result has a larger noise floor. Characteristic of the FIPOC
function, as expected, the results do indicate that the disparity
distribution of stereo images and its disparity range are half
of the image size. However, we confirm that there are some
unmatched distributions between the ground truths and the
FIPOC results. Figure 4 shows the distributions and corre-
sponding image regions. In FIPOC, the disparity distribution
is detected by the phase of the images. In this case, since low
frequency components have less edges which are equal to the
phases, height of the POC results are lower than the ground
truth. And, disparity of the low frequency components can be
detected as values which are much larger than the noise level.

2.2. Sparse Disparity Searching Stereo Matching Method

Using FIPOC results, we realize valid disparities selection.
Figure 5 (See also Fig.1) shows the selection scheme of our
sparse block matching. First, disparity sorting is performed
based on the intensity of obtained FIPOC result. In our
method, since each intensity reflects the disparity distribu-
tion, the disparity with less intensity seems to be excluded
from the valid disparities group. Thus, we are able to reduce
the number of block matching. We choose SAD as calcula-
tion cost function of our stereo matching, because the SAD is a
benchmark for stereo matching methods. And, it is worth not-
ing that our disparity selection can be applied to other stereo
matching methods.

3. EXPERIMENT

Our experimental evaluation has two objectives. First, we
evaluate and verify how the accuracy and speed are affected by
our disparity reduction method (Fig.6). Second, we compare
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Table 1. Comparison with other real time stereo algorithms based on research of B.Tippetts [20] published in 2016
Alg t(ms) W×H (disp) Mde/s CLK normalized Mde/s⋆ Avg.Acc(%) Tsukuba(%)

RTCensus [14] 77.6 450×375(60) 130.5∗ 2.0(GHz) 69.60 92.00 93.75
SADLR [13] 109.6 512 × 512(48) 114.8∗ 3.2(GHz) 38.27 N/A N/A

ProfShape [12] 16 384×288(16) 110.5 2.8(GHz) 126.29 78.04 90.42
RTDP [19] 18 384×288(16) 98.3∗ 2.8(GHz) 27.44 N/A N/A
SNCC [11] 140 450 ×375(60) 77.1 3.0(GHz) 82.24 93.01 93.92

Distinct SAD [10] 25 320 ×240(16) 49.1 800(MHz) 196.4 N/A 90.68
Naive SAD 180 384×288(30) 18.4 2.7(GHz) 21.81 77.26 86.06
Ours+SAD 70 384×288(192) 302.8 2.7(GHz) 358.87 76.69 90.42

Ours+SAD+WM 175.6 384×288(192) 120.9 2.7(GHz) 143.29 81.82 93.99
∗ Asterisk indicates using SIMD operation. According to B.Tippetts report [20] , SIMD instruction achieves 3 − 4× speed up.
⋆ Mde/s was normalized taking CLK and SIMD into consideration. Concretely, the clock speed were normalized to 3.2GHz. If using

SIMD, Mde/s was divided by 3. Our Mde/s is measured using tsukuba image. Kernel size is 7. 192 disparity candidates decreased to
10 by using FIPOC. Avg.ACC(%) is average accuracy of 4 images.Tsukuba(%) is Tsukuba accuracy. In this table, bad threshold is 1
pixel, and all region is measured.
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Fig. 6. (a)Accuracy vs Reduction rate. (b) Running time vs
Reduction rate. The reduction rate is the ratio of the number
reduced from the first valid disparities. First valid disparities
are 30 in Tsukuba and Venus image and 70 in Cones and Teddy
image. The accuracy is measured by 4 stereo images in bad
threshold 2 pixels, and all region. Running time is measured
in Tsukuba image.

our implementation with other real-time stereo vision systems
(Table 1, Fig.7).

Our method was implemented in C++ on CPU. The code
was executed on Intel Core i5-5257U (2.70GHz) CPU without
any multicore, multithread and SIMD operations.

Figure 6 shows our first experiment and results are pre-
sented in terms of accuracy and speed. We observe that our
disparity reduction technique preserves the accuracy and ac-
celerates the matching. In terms of speed, given that our
FIPOC method requires 4 ms, and this is much less than the
block matching operation time.

We compared our stereo matching method with other real-
time implementation in terms of their efficiency and accuracy.
　 We used two methods: ours + SAD and ours + SAD +
weighted median filter (WMF) [21]. WMF was used for post
filtering. In efficiency, an index of Mde/s is used in real-
time implementation. Mde/s stands for millions of disparity

(a) RTCensus
93.75%

(b) Profile shape
90.46%

(c) SNCC
93.92%

(d) DistinctSAD
90.68%

(e) Ours+SAD
90.42%

(f) Ours+SAD+WM
93.99%

Fig. 7. The output results of Tsukuba image.

evaluations per second and is described as follows:

Mde/s =
W × H × D

t × 106 (8)

Table 1 shows that ours+SAD has highest Mde/s in real-time
methods in Mde/s and in normalized Mde/s, because our tech-
nique has wide disparity detection. In accuracy comparison of
4 images, our result has less accuracy, because our system ac-
curacy depends on the SAD matching accuracy. However, in
Tsukuba image comparison (Fig.7), our + SAD + WM output
is comparable to other accurate method.

4. CONCLUSION
In this paper, we introduce sparse disparity search method
for stereo block matching. Our full image 2D POC is able
to search possible disparity widely and quickly. Our stereo
matching method is more efficient than other real time meth-
ods.
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