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ABSTRACT

In this paper, we present one saliency-based feature selec-
tion and tracking strategy in the feature-based stereoscopic
panoramic video generation system. Many existing stereo-
scopic video composition approaches aim at producing high-
quality panoramas from multiple input cameras; however,
most of them directly operate image alignment on those
originally detected features without any refinement or opti-
mization. The standard global feature extraction threshold
always fails to guarantee stitching correctness of all human
interested regions. Thus, based on the originally common-
ly identified feature set, we incorporate the saliency map
into the distribution of control points to remove the redun-
dancy in texture-rich regions and ensure the adequacy of
selected features in visual sensitive regions. Intuitively, un-
der the guidance of saliency change in the video sequence,
one grid-based feature updating strategy is operated between
consecutive frames instead of the standard global feature up-
dating. The experiments show that our method can improve
the stitching quality of visual important region without im-
pairment to the human less-interested regions in the generated
stereoscopic panoramic video.

Index Terms— Stereoscopic Panoramic Video, Commonly-
identified Feature, Saliency Map, Visual Sensitive

1. INTRODUCTION

Panoramic 3D video stitching is always a tough topic because
of its challenges including temporal coherence, dominate
foreground objects moving across views and camera jitters.
Although many feature-based 3D panoramic video stitching
methods have been proposed to solve those problems, most of
them only focus on the improvement or optimization to fitted
alignment parameters based on extracted features [1, 2, 3, 4].
The originally detected features from various algorithms
[5, 6] are usually directly used for image alignment with equal
importance and then be tracked in the video sequence with a
global criterion for new feature detection operation. Although
many complicated techniques and hardware-orientated solu-

tions are proposed for high-quality stereo vision, they usually
require expensive computation, complicated hardware set up
and densely-sampled depth information [7, 8]. The goal of
this study is to provide an efficient general feature-based s-
trategy that could produce fewer artifacts or misalignment in
those visual sensitive regions with sparsely sampled depth
information.

In this paper, the proposed feature selection strategy is
established on the construction of a commonly identified fea-
ture set at the first frame. Furthermore, we combine saliency
and gradient map to represent the visual importance of each
pixel and fairly distribute control points under the guidance
of generated saliency energy map. Thereafter, one grid-based
feature update strategy is employed to execute local feature
detection and rejection instead of the conventional global fea-
ture update strategy in tracking stage.

2. RELATED WORKS

Video stitching is always a challenge task and becomes even
more problematic when extended to stereo sense. Different
feature-based stitching approaches have been proposed to
generate high quality stereoscopic panoramic video. Jiang
et al. proposed one algorithm for stitching multiple syn-
chronized video streams into a single panoramic video with
spatial-temporal content-preserving warping [1]. Li et al.
proposed an wide-view video stitching method based on fast
structure deformation [2]. Hamza et al. stabilized panoram-
ic videos captured on portable platforms [3]. Perazzi et al.
calculated optical flow to warp different views [4]. However,
all these methods didn’t consider any strategy to refine the
original detected feature set and directly utilize them in image
alignment and tracking stages. On the other hand, Guo et al.
proposed a grid-based feature tracking method to produce
more uniformly distributed features [9]. Zhu et al. selected
corners based on the variance of region gray values to guar-
antees that corners are distributed proportionally to region
texture information[10]. But both of them lack the scheme
to ensure adequate features selection in all human interested
regions.
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Thus, inspired by the idea to minimize the saliency energy
loss caused by the removal of image content in [11], we pro-
pose one feature selection strategy that could refine the orig-
inally detected feature set and redistribute control points ac-
cording to the human visual attention. Furthermore, the local
feature update strategy is also operated based on the temporal
change of saliency energy in the later tracking stage intuitive-
ly.

3. PROPOSED FEATURE SELECTION AND
TRACKING STRATEGY

3.1. Construction of Commonly-identified Feature Set

To provide a reliable matched feature set for our saliency-
based selection, we firstly utilize the commonly-identified
feature technique to describe common features from two
pairs of input rectified stereoscopic images IL1, IR1, IL2, and
IR2 [12]. The score to evaluate the correspondence between
four randomly choosen features d1, d2, d3, d4 is defined as:

ε(d1, d2, d3, d4) =

3∑
i=1

4∑
j=i+1

‖di.v − dj .v‖2 + ‖d1.y − d3.y‖2

+ ‖d2.y − d4.y‖2 + ‖
f ∗ b

d1.x− d2.x
− f ∗ b
d3.x− d4.x

‖2

(1)

In each feature descriptor, vector di.v stores gradient infor-
mation and scalar pair di.x, di.y represent the center point
position of features. Generally, the evaluation score above
contains six gradient difference terms, two vertical disparity
terms, and one depth difference term. The symbol f is the
focal length and b is the baseline.

Thus, the construction of the commonly identified feature
set could be formulated as multiple optimization problems for
each extracted feature descriptor. For each feature descriptor
d1 from the image IL1, we can obtain the best-matched fea-
tures in the other three images:

(d̂1,2, d̂1,3, d̂1,4) = arg min
d2∈IL2
d3∈IR1
d4∈IR2

ε(d1, d2, d3, d4) (2)

Similarly, we can repeat above process for every feature
descriptor in each image. According to the different sources
of chosen feature descriptors for optimization, four images
will produce four candidates of the commonly identified fea-
ture set: SL1, SL2, SR1, and SR2. Hence, the verified com-
monly identified feature set is set as the intersection of the
above four candidates for uniqueness:

Sv = SL1 ∩ SL2 ∩ SR1 ∩ SR2 (3)

Fig. 1: Example of generated energy maps.

3.2. Saliency-based Feature Selection

Once we obtained the commonly-identified feature set for the
four neighboring images at first frame, the next step is to se-
lect the reliable feature set for current frame stitching. Gen-
erally, the traditional global threshold often produces fewer
features in poor texture areas because of the threshold will be
biased by texture rich regions [13]. Thus, when some poor
texture areas attract more attention from viewers, the inade-
quate number of control points will make most of them be
considered as outliers during the RANSAC-based homograph
estimation process. Hence, more misalignment or stitching
errors are expected to appear in those regions. To improve the
stitching quality of visual important areas, one saliency-based
feature selection strategy is employed to adjust the selected
control points into more reasonable distribution.

Our feature selection strategy starts with the generation of
energy map, which indicates the visual importance of all pixel
in each video frame. To generate visual sensitivity map with
more sharp boundary, one energy fusion function [11] is used
to combine the gradient map and GBVS-based saliency map
[14, 15] as:

e(i, j) = α1 ·Gradient(i, j) + α2 ·GBV S(i, j) (4)

where i, j represents the pixel of coordinate. Based on
min-max normalization, the value of Gradient(i, j) and
GBV S(i, j) are both normalized into [0,1]. Thus, for the four
images in the first frame, we can compute the corresponding
energy maps of their overlapping region: EL1, EL2, ER1 and
ER2. The generated energy maps of left view neighboring
images is shown in Fig.1.

Then, we fragment each overlapping region into M × N
grids: {Gp,q, p ∈ {1, 2, ...M}, q ∈ {1, 2, ...N}}. For each
grid at pth row and qth column, the corresponding energy
weight, ω̂p,q , is defined as the normalized value of energy
summation in the grid:

ωp,q =
∑

(i,j)∈Gp,q

e(i, j) (5)

ω̂p,q =
ωp,q∑
p,q ωp,q

(6)

The energy weight ω̂p,q represents the corresponding per-
centage of visual importance in the whole overlapping re-
gion. After running the above operations in the four regions:
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EL1, EL2, ER1 and ER2, we can use the average of four nor-
malized energy weight as the commonly-identified weight of
all four corresponding grids:

ωc
p,q = (ω̂L1

p,q + ω̂L2
M,q + ω̂R1

p,q + ω̂R2
M,q)/4 (7)

Given the total number of control points we are going to pro-
cess, T , we can compute the number of features we need to
select in each grid:

Bp,q = T × ωc
p,q (8)

Due to the over-sized features in texture rich grid, we need to
remove some less-reliable or redudant feature squads based
on our proposed ranking score. For each commonly-identified
feature squad {dL1, dL2, dR1, dR2}, its ranking score consists
of one matching confidence term and one disparity term:

R(dL1,dL2, dR1, dR2) =
β1

ε(dL1, dL2, dR1, dR2)
+

β2 · [‖dL1.x− dR1.x‖+ ‖dL2.x− dR2.x‖]
(9)

Since the small corresponding score between 4 control points
from equation 1, ε(dL1, dL2, dR1, dR2), implies high match-
ing reliability of the feature squad, the matching confidence
term is then defined as the reciprocal of it. The disparity term
is incorporated to compensate those nearby objects that to any
visible stitching errors.

All commonly-identified feature squad in each grid are
sorted in a descending order of our proposed ranking score
R. The first Bp,q commonly-identified feature squad in each
grid are then regarded as the selected control points and will
be tracked in consecutive frames. One example of matched
feature squads before and after the saliency-based selection
is depicted in Fig.2. It’s appreantly that many reduandany
control points are removed and those selected control point
are distributed more uniformly.

3.3. Grid-based Local Feature Update Strategy
In conventional method, those detected features will be sen-
t to various tracker which can estimate their position in later
frames. The new feature detection will be operated only when
the global number of tracked features drops below a given
threshold. Unfortunately, the lost or mistakenly tracking of
several key features may largely impair the stitching quality
because of its failure to initialize the new feature detection op-
eration. To avoid this kind of situation, we proposed the local
saliency-based feature tracking strategy that focus on the tem-
poral energy change of each grid. In other words, instead of
stitching merely based on tracked features or newly-detected
features, we update the features in each grid independent-
ly and operate image alignment based on these local hybrid
feature set. The temporal energy change between previous
frames t and current frame t+ 1 is defined as:

δp,q = Bt+1
p,q −Bt

p,q (10)

The positive δp,q means the new feature detection is needed in
the grid of current frame, thus the local commonly-identified

Matched points 1

Matched points 2

Matched points 1

Matched points 2

(a) Matched commonly-identified features between neighbour cam-
eras before saliency-based selection in left and rigth view.

Matched points 1

Matched points 2

Matched points 1

Matched points 2

(b) Matched commonly-identified features between neighbour cam-
eras after saliency-based selection in left and rigth view.

Fig. 2: Comaprison of commony-identified feature squads for
stitching before and after the saliency-based selection.

feature construction and matching ranking will be operated in
gridGp,q . The negative δp,q indicates some redundant control
points need to be removed according to the ranking scores
and the zero-valued δp,q implies all tracked features from the
previous frame will be used for stitching of current frame.

4. EXPERIMENTS

To demonstrate the improvement of our proposed feature
selection and tracking strategy to stitching quality of the
stereoscopic panoramic video, we implemented our saliency-
based feature selection strategy (SFS) based on the framework
of open-source panorama stitching software Hugin[16] and
compared result with the standard method, as no feature se-
lection strategy (NFS). The experiments data are synthesized
outdoor scenes that describe one walking man in a circular
path with different radius. In our experiments, the overlap-
ping regions of four neighboring images are all divided into
10 by 5 grids. The α1 and α2 are set as 0.5. The two co-
efficients β1 and β2 in equation 9 are set as 0.7 and 0.3 .

4.1. Visual Improvement to Stereo Panoramic Video
Fig.3 shows several left view panoramas stitched by no fea-
ture selection strategy and our proposed strategy. In the areas
marked by the blue rectangles in the top three panoramas, the
walking man suffers from several visible stitching errors like
the distortion of the head and the discontinues of the chest.
In the top row of Fig.4, these evident monocular stitching

1839



No Feature

 Selection

????

Saliency-based

Feature Selection

Fig. 3: Comparison of left view video stitching result between
NFS and SFS.

errors deliver contradicted depth information of human head
and chest in the stereoscopic video and result in serious view-
ing discomfort. This is because the feature detector fails to
sample adequate control points in the suit with chess board
texture. However, our proposed method can handle this prob-
lem and get the close walking man smoothly stitched. Based
on the optimized distribution of control points that sample ad-
equate percentage of features in those visual sensitive regions,
the homography estimation will be operated under the guid-
ance of the human attention. Thus, better monocular stitching
quality and correctly embedded depth information in those
visual sensitives region are expected.

4.2. Quantitative Comparison
To quantify the improvement of our proposed method to
monocular frame stitching quality over standard selection
strategy, the root means square error (RMSE) is used to eval-
uate the accuracy of alignment. For quantitative analysis of
the stereoscopic panoramic video in the vertical direction, we
measured the average vertical disparity of all matched fea-
tures between left and right views. For the horizontal direc-
tion, we first consider the estimated depth from the original
rectified image pair as the ground truth. The average dis-
tance of all matched features between the depth from stitched
stereoscopic panoramas and the depth from the ground truth
is then used as the metric to evaluate the performance of depth
control. The numerical result of 20 frame synthetic outdoor
scenes in different radius of circular path are shown in Table
I. Each frame of stitched panoramaic video is scaled to 12000
by 3000 pixels for 360◦x90◦.

No Feature

Selection

Saliency-based   

Feature Selection

Fig. 4: Comparison of stereoscopic stitching result between
NFS and SFS in red-cyan anaglyph version.

Table 1: Comparison result in circular path of different radius

RMSE Vertical Disp Horizontal Dist
NFS+1.3m 9.73px 0.19◦ 0.94◦

NFS+2.0m 2.46px 0.13◦ 0.63◦

NFS+3.3m 1.81px 0.10◦ 0.35◦

SFS+1.3m 8.45px 0.05◦ 0.12◦

SFS+2.0m 2.06px 0.06◦ 0.12◦

SFS+3.3m 1.03px 0.05◦ 0.11◦

5. CONCLUSION

In this paper, we presented a feature selection and tracking
strategy that optimizes the distribution of control points in
panoramic video generation system. For this goal, we uti-
lize the energy map that consists of saliency map and gradient
map to compute the visual importance of each pixel. Based
on them, we divide the overlapping region into grids and de-
compose the control points optimization problem into mul-
tiple ranking problems in each individual grid according to
our proposed matching score. Afterwards, to maintain stitch-
ing correctness and temporal coherence, the control point set
in each divided grid will be updated independently based on
the change of energy. Some experiments based on synthe-
sized data have been operated to prove the effectiveness of
our method. In futrue works, more challenging tasks, such as
mutiple movng objects, textureless moving object and com-
plicated camera rigs setup, will be tested.
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