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ABSTRACT 
 
A robust multi-view disparity estimation algorithm for noisy 
images is presented. The proposed algorithm constructs 3D 
focus image stacks (3DFIS) by projecting and stacking 
multi-view images and estimates a disparity map based on 
the 3DFIS. To make the algorithm robust to noise and 
occlusion, a texture-based view selection and patch size 
variation scheme based on texture map is proposed. 
Experiment results indicate that the proposed algorithm 
outperforms conventional stereo matching algorithms as well 
as previously reported multi-view disparity estimation 
algorithms under noisy conditions. 
 

Index Terms— disparity map, multi-view images, 3D 
focus image stacks, noisy image 
 

1. INTRODUCTION 
 
Stereo matching for estimating disparity map using stereo 
images has been well-studied in computer vision [1-26]. 
Disparity map can also be estimated using multi-view 
images (more than two views) [27-30], and plays a critical 
role in multi-view image processing like denoising, super 
resolution, etc. However, most of existing algorithms are 
specifically tailored for noiseless images, and their 
performance deteriorates when the images are contaminated 
by noise, which further impedes future image processing 
procedures. In this paper, disparity estimation from multiple 
views under noise will be investigated. 

Disparity estimation methods can be categorized into 
local and global types. Local methods [1-13] are relatively 
simple and efficient, which makes them capable of real-time 
processing. Typical local methods compute matching cost 
for each pixel within a support region using all possible 
disparities, and then performs a “winner-takes-all” (WTA) 
optimization [1]. The downside of local methods, however, 
is that their simple structures make them prone to producing 
inaccurate estimations in homogenous areas that have few 
textures, as well as in occluded regions that are invisible to 
partial of the cameras. Improvements of local methods focus 
on using more robust matching costs [2-7], adaptive support 
windows [8-10], efficient cost aggregation [10-13], etc. 
Global methods [14-23], on the other hand, demonstrate 

superior performance in such areas where local methods fall 
short. They are often formulated in an energy-minimization 
framework that aims to minimize a global energy function 
consisting a data term and a number of regularization terms. 
A variety of algorithms have been proposed to solve the 
optimization problem, including simulated annealing [14, 
15], belief propagation [16-18], graph cut [19-21], dynamic 
programming [22, 27], etc. Unfortunately, the high 
computational complexity of energy function minimization 
in global methods prevents them from being applied to real-
time implementation. Meanwhile, machine learning 
techniques that assist matching cost computation have also 
been recently studied. Zbontar et al. [23] proposed to learn a 
similarity measure using a convolutional neural network 
(CNN). Multiple literature has been published to improve 
this CNN-based method, including hierarchical image 
segmentation [24], bilateral solver [25], and weakly 
supervised learning on unlabeled images [26]. However, the 
training stage of such methods requires high computational 
cost and hardware configurations such as GPU acceleration. 
Also, their performance on noisy images is unknown. 

In this work, we adopt the simple framework of local 
methods for its efficiency, while implementing the 3D focus 
image stacks (3DFIS) to facilitate a more accurate disparity 
estimation in noisy condition. To overcome the issues 
caused by noise and occlusion, we further propose a view 
selection and patch size variation scheme based on texture 
map that is estimated from the 3DFIS. 
 

2. DISPARITY ESTIMATION  
 
We assume the multi-view images are acquired from a dense 
planar array of cameras. The cameras are placed at grid 
points (s, t)  Z2 which is a set of 2D integer indices of the 
camera array. Without loss of generality, the center view, 
which is located at (0, 0), is designated as the reference 
view. The images are assumed to have been calibrated and 
rectified so that their epipolar lines are parallel to the 
horizontal axis, and homography between images can be 
simplified to pure translation. In noisy conditions, the noise-
corrupted images can be modeled as the sum of clean images 
and additive white Gaussian noise for each pixel (x, y): 
  

, , ,( , ) ( , ) ( , )s t s t s tI x y I x y n x y  ,  (1) 

where I's, t is the noiseless clean images, and ns,t is i.i.d. zero-
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Fig. 1. Number of error pixels when using different number of views 

 

mean Gaussian noise with variance σ2.  
 
2.1. 3D Focus Image Stacks 
 
3D focus image stacks (3DFIS) was previously introduced 
by us for multi-view image denoising [30]. Assume there are 
K cameras in the camera array and each camera corresponds 
to a grid point (s, t), i.e. there is a unique mapping from (s, t) 
to an integer k such that 1 ≤ k ≤ K. Then each image Is,t(x, y) 
at the (s, t) view is shifted by (sd, td) and stacked upon each 
other to form a 3-dimensional matrix  
  

,( , , ) ( , )d
s tF x y k I x sd y td   . (2) 

The 3D matrix Fd(x, y, k) is called a 3D focus image stack 
(3DFIS) with respect to disparity value d. It contains all the 
information from all cameras when the focal plane 
corresponds to disparity d. Ideally, if the (x, y) pixel at the 
target view I0,0(x, y) has the true disparity value d, then the 
entire column of Fd(x, y, k),  denoted by Fd(x, y, :), should 
have the same pixel value, that is,  

  0,0 1( , ,:) ( , )d
KF x y I x y  1 , (3) 

where 1K1 is a vector consisting of all 1s.  
 
2.2. Disparity Map Estimation using 3DFIS 
 
With the 3DFIS constructed from multiple views, the 
disparity map can be estimated by exploring the consistency 
of images in each stack. Some previous works [29-31] 
generate multi-focus images (MFI) by simply averaging each 
3DFIS as  

  
1

1
( , ) ( , , )

K
d d

k

I x y F x y k
K 

  ,  (4) 

and then compute matching cost using the sum of absolute 
difference (SAD) between each MFI and the reference view 

  
0,0

( , ) ( , )

1
( , , ) ( , ) ( , )d

i j N x y

C x y d I i j I i j
n 

  ,  (5) 

where N(x, y) is the square neighborhood of (x, y), and n is 
the number of pixels in N(x, y). The disparity value of (x, y) 
is then estimated as  

  ˆ( , ) arg min ( , , )
d

d x y C x y d .  (6) 

The MFI-based method, while simple, often yields 
noisy, spurious disparity maps. In particular, occlusions due 
to sharp discontinuities on the disparity map are not 
considered in forming the MFI. In addition, flat or low-
texture regions tend to produce ambiguous estimations due 
to matching errors. To address these issues, a robust 
matching cost, along with a texture-based view selection and 
patch size variation scheme is proposed. 

 
2.2.1. Disparity Estimation with Robust Matching Cost 
 
For each pixel (x, y) and the support window W centered at 
it, let us denote by vd

k a vector containing all pixel values 

within window W of kth view in the focus image stack Fd. 
For convenience, let vd

1 be the column corresponding to the 
reference view. We compute the vector difference between 
the kth view (k > 1) and reference view (k = 1): 

  1 , 2d d d
k k k K   v v v .  (7) 

Then sort the sequence {||ṽd
k||1; 1 ≤ k ≤ K} in increasing order 

such that k → k’, ||ṽd
k’||1 ≤ ||ṽd

k’+1||1. Here, ||ṽd
k||1 is the sum of 

absolute values of each element in ṽd
k. Define the matching 

cost as the mean value of h best ||ṽd
k’||1 (1 < h ≤ K) as 

  *
' 1

' 2

1
( , , )

( 1)

h
d
k

k

C x y d
n h 




 v ,  (8) 

where n is the number of pixels in patch vector vd
k. Finally, 

the disparity value for pixel (x, y) will be estimated as 

  * *ˆ ( , ) argmin ( , , )
d

d x y C x y d .  (9) 

It can be easily proved that the matching cost C* in eq. (8) is 
greater than or equal to the C in eq. (5). In other words, 
patch mismatches tend to produce higher cost in eq. (8), and 
thus the proposed matching cost makes it easier to 
distinguish the true disparity from all other candidates, 
making the disparity estimation more robust to noise. 

In eq. (8), the choice of h is critically important to the 
accuracy of the estimated disparity map. If a view is 
occluded by another object due to discontinuities in the 
disparity map, serious bleeding artifacts, as illustrated in Fig. 
2(a)(b), may degrade the quality of the estimated disparity 
map. Previously, Kang et al. [32] proposed to use the best 
50% of the frames (views) in computing the matching cost. 
However, as shown in Fig. 1, the number of views that 
yields best disparity estimation may need more than 50% of 
views. In this work, we propose a dynamic view selection 
heuristic based on the texture analysis of the reference view. 

Apart from view selection, we also consider the patch 
size used in computing the matching score. Small patch sizes 
tend to reveal details but are vulnerable to noises in flat 
regions, and large patches will have the opposite behavior. 
Therefore, we propose a method to vary patch size 
selections based also on the texture analysis of the image.  
 
2.2.2. Texture Map Estimation 
 
Due to the corruption of noise, texture map estimated from 
the reference image contains large amount of noisy artifacts. 
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a  b  

Err = 33.39% Err = 22.66% 

c  d  

Err = 20.40% Err = 19.54% 
 

Fig. 2. Disparity maps using (a) fixed patch size (5×5) + all views;   
(b) variable patch size + all views; (c) variable patch size + 
50% views; (d) variable patch size + view selection 

 

a  b  

 
Fig. 3. (a) noisy image; (b) texture map 

 

In correspondence, we developed a novel multi-view 
strategy to estimate texture map such that the impact of noise 
can be reduced from redundant information of multiple 
views. Previously in Section 2.1, it was mentioned that the 
column vector Fd(x, y, :) should have the same intensity 
value if the true disparity value at (x, y) is d, and vice versa. 
In other words, the variance of vector Fd(x, y, :) is small only 
when the true disparity at pixel location (x, y) is d.  
However, this is only true for high-texture regions, where 
edges and pixel intensity variations are prevalent. In low-
texture regions, due to the homogeneity of pixel values 
within the neighborhood, column vector Fd(x, y, :) tends to 
contain similar values no matter whether the true disparity is 
d or not, which in turn makes the variance of Fd(x, y, :) 
remains relatively small for all disparity values.  

Given 3DFIS Fd(x, y, k), the standard deviation σd(x, y) 
is obtained for each pixel (x, y) 

   
2

1

1
( , ) ( , , ) ( , )

K
d d d

k

x y F x y k F x y
K




  ,  (10) 

where F̅d(x, y) is the mean value of vector Fd(x, y, k). Then 
the strength of textures at (x, y) is defined as 

  
max

1max

1
( , ) ( , )

d
d

d

x y x y
d




   ,  (11) 

where dmax is the maximum of candidate disparity values. To 
further reduce the impact of noise, we also apply a 
smoothing filter (e.g. Gaussian) to each σd. Fig. 3 shows an 
example of texture map of a multi-view dataset, where bright 
colors (large values) represent high textures, while low 
textures are identified as dark colors (small values). From 
the texture map, low and high texture regions can be 
identified to assist disparity estimation, which will be 
discussed next. 
 
2.2.3. View Selection and Patch Size Variation 
 
With the texture map, both patch sizes and number of views 
to be selected can be calculated accordingly. Assume the 

size of a patch may range from Lmin×Lmin to Lmax×Lmax. In flat 
areas, the texture strength at pixel (x, y), Σ(x, y), decreases, 
and needs a larger patch size. When Σ(x, y) ≤ Σl (pre-
determined lower threshold), the maximum patch size Lmax is 
used. Similarly, when Σ(x, y) ≥ Σu (pre-determined upper 
threshold), the minimum patch size Lmin is used. Then we 
define the patch size L(x, y) as a linear function of texture 
strength Σ(x, y) 

max

max min min max

min

                                                      , ( , )

( , ) ( , )      , ( , )

                                                       , ( ,

l

l u
l u

l u l u

L x y

L L L L
L x y x y x y

L x y

  

    
       

   

 ) u






  

.  (12) 

In practice, the values of Σl and Σu are related to the noise 
level and are determined empirically through experiments. 

The number of views selected can also be related with 
the texture strength in a similar way. We define the number 
of selected views V(x, y) as a function of patch size L(x, y) 

min

max min
min max

max min max min

0.5                                                         , ( , )

2
( , ) ( , )      , ( , )

2( ) 2( )

                                                   

K L x y L

K L K LK
V x y L x y L L x y L

L L L L

K



  
    

 

max          , ( , )L x y L






 

,  (13) 

where K is the total number of views. In other words, the 
number of views we selected is proportional to the patch size. 
Fig. 2 (a)-(d) illustrate the disparity maps using different 
strategies, ranging from the vanilla version from our 
previous works to the improved version proposed in this 
paper. As illustrated in Fig. 2(d), the robust view selection 
and patch size variation process can reduce the error of 

Algorithm 1 Disparity Estimation 
 Input: 3DFIS Fd, d = 1, …, dmax 

 Output: Disparity map Dest 

1 for d = 1 : dmax 

2       for each pixel location (x, y) 

3             Compute σd(x, y) using eq. (10); 

4       end 

5       Apply Gaussian filter to σd; 

6 end 

7 Estimate texture map Σ using eq. (11); 

8 Estimate patch size L and number of views V using eq. (12) (13); 

9 for d = 1 : dmax 

10       for each pixel location (x, y) 

11             Compute C*(x, y, d) using eq. (8), with h = V(x, y), and patch 

             size = L(x, y); 

12       end 

13 end 

14 Compute estimated disparity map dest using eq. (9);  
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a  b  c  d  

Err = 79.83% Err = 43.77% Err = 64.84% Err = 68.58% 

e  f  g  h  

Err = 53.02% Err = 37.26% Err = 19.54%  
 

Fig. 4. Comparison of disparity map estimation at σ = 20: (a) Kolmogorov et al. [19]; (b) Klaus et al. [17]; (c) Taniai et al. [21]; (d) Lee et al. [12];  
(e) Miyata et al. [29]; (f) Zhou et al. [30]; (g) proposed; (h) ground truth 

disparity estimation. An overview of the disparity estimation 
is illustrated in Algorithm 1. 
 

3. EXPERIMENTS 
 
We evaluate the proposed disparity estimation algorithm 
through experiments on several multi-view image datasets. 
Our experiments are conducted using the popular 
Middlebury Stereo Dataset [33]. For all datasets, white 
Gaussian noise with standard deviation σ = 20 is added. The 
evaluation criteria for measuring the quality of disparity map 
is the error percentage, which is defined as 

   
1

1
( ) ( ) ( )

N

est est gt
i

Err d d i d i
N 

  ,  (14) 

where dest is the estimated disparity map, and dgt is the 
ground truth. N is the total number of pixels in the image. As 
for the parameters, the maximum and minimum patch sizes 
are set to Lmax = 15, Lmin = 5. The upper and lower threshold 
Σu and Σl are defined as Σu = 0.5σ + 19, Σl = 0.75σ + 5, 
where σ is the noise standard deviation.  

In Table 1, we compare the error percentage of different 
methods on various datasets when noise level σ = 20. 
Kolmogorov et al. [19] and Klaus et al. [17] are two of the 
conventional stereo matching algorithms that produce 
disparity maps with decent quality on noise-free images. 
Taniai et al. [21] is currently the state-of-the-art algorithm 
on Middlebury evaluation (ver. 3). Lee et al. [12] is a recent 
local method that improves on cost aggregation. Miyata et 
al. [29] and our previous work [30] are multi-view 
algorithms that perform disparity estimation and denoising 
simultaneously. As can be observed, existing stereo 
matching algorithms lack robustness when images are 
contaminated by noise, though most of them produce 
excellent disparity map on noiseless images. In comparison, 
the proposed algorithm shows decent error rate in noisy 
conditions. Similar improvements can also be observed 
under higher noise levels with performance degradation for 
all methods, but will not be shown here due to page limit. 

In Fig. 4, the proposed method is compared with other 
stereo and multi-view disparity estimation algorithms on 
“Tsukuba” dataset. Most stereo algorithms are severely 
underperforming due to noise interference. Our previous 
work shows improving robustness but suffers from bleeding 
artifacts near object boundaries caused by occlusions. The 
proposed method suppressed such artifacts thanks to the 
view selection procedure. Also, with the patch size variation, 
the flat regions are much smoother in our proposed disparity 
map. 
 

4. CONCLUSION 
 
In this paper, we have proposed a multi-view disparity map 
estimation algorithm that is robust to noise. By constructing 
the 3DFIS, with the proposed texture-based view selection 
and patch size variation scheme, our method is also able to 
handle the occlusion problem and ambiguity issue in low 
texture regions, while mitigating the degradation of 
estimation accuracy caused by noise. In the future, we would 
like to investigate different noise types other than Gaussian 
noise. 
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 Tsukuba Barn Cones Venus 

Kolmogorov et al. 79.38 65.66 72.89 73.66 

Klaus et al. 43.77 36.89 40.03 50.17 

Taniai et al. 64.84 48.37 61.82 51.06 

Lee et al. 68.58 53.75 60.12 68.93 

Miyata et al. 53.02 52.68 61.33 60.70 

Zhou et al. 37.26 43.33 49.52 54.06 

Proposed 19.54 18.28 25.05 21.29 

 
Table 1. Error percentage (%) comparison when σ = 20 
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