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ABSTRACT

This paper describes the application of belief propagation meth-
ods to image fusion within a complex wavelet decomposition (the
Dual Tree Complex Wavelet Transform: DT-CWT). Belief prop-
agation within each transform subband iterates through a lattice
based Bayesian belief network. This leads to precisely controlled
spatial coherence of subband coefficient fusion through the def-
inition of belief graph probabilities. This results in a significant
improvement in quantitatively measured fusion performance for a
large database of over 160 fusion image pairs from a range of fusion
applications including remote sensing, multi-focus and multi-modal
sources. Improvements in qualitative image fusion performance is
also demonstrated.

Index Terms— Image Fusion, Wavelets, Bayesian Belief Net-
works, Bayesian Belief Propagation

1. INTRODUCTION

Fusion is the process of combining two or more images to produce
a single fused output that combines important perceptual elements
of the inputs. Effective fusion offers significant benefits for scene
understanding, visualisation, target location / recognition and situ-
ational awareness within such diverse domains as remote sensing,
surveillance, medicine and military applications. Image fusion can
be implemented for just a single image pair, multiple images, im-
ages of different modalities and resolutions, or by extension, video
sequences. This paper focuses on the fusion of two registered images
of the same resolution.

A large and diverse number of methods have been used for im-
age fusion. These include simple pixel based methods and those
derived from Principle Component Analysis (PCA) on a pixel and
transform basis [1]. Transform based methods have also been used
extensively. These transform based methods include those based on
the following transformations: the Intensity-Hue-Saturation (IHS)
transform [2], general multiscale transforms [3—6], wavelet, complex
wavelet, undecimated wavelet [7-10] and total variational methods
[11].

Image fusion using the Dual Tree Complex Wavelet Transform
(DT-CWT [12]) has been recognised as being highly effective due
to improved directional selectivity, approximate shift invariance and
complex subband analysis of the DT-CWT. This paper has focused
on using this framework (introduced by Hill et al. [13]). A signifi-
cant issue with any wavelet fusion is the spatial incoherence of the
subband based fusion process (spatial coherence is how consistent
the choice of subband coefficient, between the two input image co-
efficient choices, is within small spatial areas). Spatial coherence
has been previously addressed using simple weighting and major-
ity filters [3, 14, 15]. However, the contribution of this paper is the
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application of belief propagation techniques in order to flexibly, op-
timally and globally control spatial coherence and therefore improve
quantitative and qualitative results. Belief function theory has pre-
viously been used to study image fusion applications [16], but our
work is the first work to specifically use belief propagation methods
for image fusion.

2. REVIEW: WAVELET BASED IMAGE FUSION

Early fusion methods based on pyramid decompositions have now
largely been superseded by Discrete Wavelet Transform (DWT)-
based methods [17-19]. The fusion of two sources utilising the
DWT can be defined in terms of the two registered input sources Io
and I, the wavelet transform itself w and a fusion rule @, defined to
combine co-located coefficients within the transform domain. The
fused wavelet coefficients are then inverted using an inverse wavelet
transform w ™! to produce the resulting fused image F', thus:

F=w " 0(w(o),w(lL))). D
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Fig. 1: Fusion of two images using the DT-CWT

We have used the Dual Tree Complex Wavelet Transform (DT-
CWT) for our experiments as it has been found to give excellent
results due to its approximate shift invariance and improved direc-
tional selectivity compared to the DWT [13]. Figure 1 illustrates the
utilised two image fusion scenario using the DT-CWT.
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The most basic fusion rule for wavelet domain fusion is the
“choose maximum” rule (where the largest magnitude coefficient
from either image is retained in the fused output). Although giv-
ing good results, this fusion rule can lead to isolated coefficients and
general spatial incoherence. Previously defined wavelet based image
fusion methods have integrated spatial consistency methods [14,15].
For example Li’s method [3] uses a local majority filter (chooses the
current coefficient based on the largest number of maximum choices
in a local window). To obtain the output coefficient v(k, [) (at spatial
position k, [), the maximum count n(k, [) within a local window R
can be expressed as

n(k,)= > Tey, (So(i+kj+1)—Si(i+kj+1) )
(i,7)ER

where Sy and S are the current subbands from each image and 1 is
the indicator function. The output coefficient v(k, ) is chosen as

ol 1) = {So(k,l)

(k1) > L/2
otherwise

S1(k,1) )

where L is the number coefficients in the local region R. This, and
associated methods are very rudimentary as they don’t globally op-
timise the control of fusion coherence.

Fig. 2: Bayesian Graph Model for Belief Propagation within a single
wavelet subband (the black dots represent the hidden states () and
the white dots represent the observations (y)).

3. APPROACH

3.1. Belief Propagation for Image Fusion

Belief propagation is implemented on a subband by subband basis
in order to accurately control the spatial coherence of the fusion
process within the wavelet transform. Figure 2 shows the graphi-
cal model structure for the belief propagation system. One graphical
model is defined for each wavelet subband. Each of the observed
and hidden nodes within the model are associated with a single co-
efficient within the considered subband. The hidden nodes (denoted
xy) are 4-connected across the entire subband and co-located with
associated subband coefficients at index position k. Additionally,
one observed node (denoted y) is associated (and singly connected)
to each hidden node (). For the fusion of two images, each hidden
node can be in one of two states; one state associated with each of
the input image coefficients. The observed state relates to the obser-
vations of the coefficient magnitudes from each image.

Although this network contains loops, it has been found that sta-
ble results can still be obtained with looped networks through belief
propagation [20].

The probability of the choice of one image coefficient (out of the
two possible) is proportional to the product of all sets of compatibil-
ity matrices W and vectors ¢ [20,21]:

P(aly) = Z(H)\I/u zi, 25 H<I> woy), ()
3

where the first product is over spatial neighbours ¢ and j and Z is a
normalising constant. W;; (z;,z;) and ®; (z;,y;) are the pairwise
compatibility functions (also shown in figure 2).

Equation (4) is difficult to evaluate for any non trivial case. How-
ever, it can be evaluated using an iterative update method known
as Belief-Propagation (BP). BP uses a message-passing system that
updates “messages” 1m;; from hidden node z; to z;. These “mes-
sages” are two dimensional vectors (for the two image fusion case).
Using m;; (x;) to denote a component of m;; associated with x;
(a possible subband coefficient) this message can be updated us-
ing [20,22]:

mz] E \Ijz] x17xj Ilmkz l’z

k#j

0617311) . (5)

The summation is over all the possible image coefficients x; at node
% (2 in this case). The product is over all 4-connected neighbours of
the node ¢ (with the exception of node j). When this iterative update
has converged, the BP estimate of the marginal probability vector b;
can be found using:

| |mk2 xz

where b; (x;) is the component of b, associated with image coeffi-
cient ;. The MAP estimate for the output coefficient ;3rap can
be chosen as the maximum component within b;

xhyl) ? (6)

TimMap = argmax, bi (z:), @)

3.2. Compatibility Functions

d is vector valued with each component representing the compatibil-
ity between each hidden state and the observations. The components
of ® reflect the compatibility of observed coefficient magnitudes (for
each image) to an ideal output coefficient. Each component of the ®
vector (associated with each image) is therefore set to:

d(wk, Yr)
)
where d(zy, yx) is a distance measure between the hidden state x,
and its associated observation yi. This is defined as d(zy,yx) =
Smaz — |ck| where |c| is the magnitude of the subband coeffi-
cient ¢ and Syqz is the maximum of || for both image subbands.
The subband magnitudes are normalised to unit range and therefore
Smaz = 1. The larger the observed coefficient the more “compat-
ible” the coefficient is with the ideal fused value and therefore the
larger the value of @, (xx, yx) (according to (8)).

W is matrix valued with the elements representing the compati-
bility of a hidden state x; with its neighbour z;. In the case of a two

P (k, yr) = exp <—
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Fig. 3: Z score results for Petrovic Metric. Left hand side shows the results for all 166 image fusion pairs (indexed on the z axis). Right
hand side, the same data-points are overlaid on a 1.96 SEM (standard error of the mean) (95%) confidence interval in red and an Standard

Deviation (SD) interval in blue.

image fusion system this is a 2 x 2 matrix. These values can be cal-
culated from the coefficients. However, our aim is the control of the
spatial coherence of the fusion process. We therefore set the com-
patibility of neighbouring nodes with the same hidden states to be a
constant (p) and the compatibility of different hidden neighbouring
states to be zero i.e.:

el )

where W11 = Wy = pand U2 = Wio = 0. ¥ can be defined
separately for each of the 4-connected directions according to ap-
plication requirements. However, they are defined as being equal
within our two image fusion case.

Wi
Vo

Wi

Doy ®

3.3. Implementation and Experimental Conditions

The implementation of equations (5) and (6) requires a large number
of products. Through the common transformation of likelihoods,
compatibilities and messages to the log domain, equations (5) and
(6) can be implemented using iterative additions saving considerable
computation. Equations (4)-(7) are transformed to (10)-(13).

d(z,
@k(xk,yk):% U =In(pl2) (10)

)

mij (25) = > Wiy (@i, 25) + Y (s (25) + @4 (2, 33)) ,

k]

T

an

bi () = Y (i (22) + @i (w3, 95)) (12)
k

TiMAP = argminxj bi (z4), (13)

setting p to be 0.3679, ¥ is now the identity matrix I2. o is set
to 0.1342 for all the experiments. These numbers were obtained

through the optimisation of the Petrovic metric results over a small
subset of the same dataset (a small subset is used to avoid over fit-
ting). The optimisation method used was the default simplex method
used within the MATLAB fminsearch function.

3.3.1. Weighted Update

It was found that local minima were prevented and the overall control
of belief propagation more precisely controllable using a smoothed
update of the messages from one iteration to the next. Specifically,
defining a message my ;; (z;) at iteration, ¢ + 1 equation (11) is
transformed to a weighed sum of the new and old messages

Mey1,55 (T5) = (1 — @) mi; (14)

ta | Y Wi (@) + Y (meki (@) + @i (2i,90) |
z; k#j

where « is the weighting parameter (set to 0.75 for all experiments).

Also, then equation (12) becomes

Z (ma ki (x:) + @i (x4, 94))

k

where T is the index of the last iteration.

4. RESULTS

4.1. Dataset

We employed the extensive dataset used by Petrovic in [23]. It is
noted that the majority of previous papers on image fusion have used
a very small dataset. In contrast here, we present an in-depth statis-
tical evaluation of over 166 image fusion pairs.
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Fig. 4: (a) and (b) Multifocus image set (image pair index 39 within Petrovic dataset [23]). (c) Proposed and choose maximum method fused
result (enlarged). The lower images are contrast stretched to better visualise the ringing artefacts of the choose max method compared to the
proposed method. Ringing artefacts can be seen to the left of the letter 8 in the choose maximum fused image compared to the proposed fused

image.

4.2. Image Fusion Metrics

Numerous image fusion metrics have been proposed. However,
within this paper we focus on reference free metrics due to the lack
of ground truth within our dataset [24].

The two universally adopted image fusion metrics are those de-
veloped by Petrovic [23,25] and Piella [26]. We exclusively use
the Petrovic metric here because: (i) Petrovic provided an extensive
study of the correlation of his metric with subjective tests using the
same dataset of 166 images we have used and (ii) the Piella met-
ric uses the luminance aspects of the Structural SIMilarity (SSIM)
metric [27] that are not appropriate for all the images in the dataset.

4.3. Z scores

The Petrovic image fusion metric [25] is used to compare; the pro-
posed method, the choose maximum method, Li’s method [3] and
Loza’s method [15] for all of the 166 fusion image pairs within the
image database [23]. All these methods use the DT-CWT and there-
fore give a fair comparison. An exhaustive comparison of DT-CWT
methods to other recently developed fusion methods is given in [28]
and shows comparable performance. Such an exhaustive comparison
is not given here in order to not confuse what is being compared.

When calculating the mean and variance values across all meth-
ods for each image pair there are significant variations across the
entire dataset. The presentation of the raw results without compen-
sation for these variations would therefore not show the relative per-
formance between the considered methods across the dataset. The
results of each method and image pair are therefore converted to
Z-scores. The left hand side of figure 3 shows the results across
the entire dataset for the four methods. The right hand side of the
same figure shows the same data-points grouped together with each
method where data-points are laid over a 1.96 SEM (standard error
of the mean) (95% confidence interval) in red and a 1 SD (standard
deviation: in blue).

To quantify these results, three hypotheses are defined: the mean
score of the proposed method is higher than the mean of each of the
other methods (i.e. using the results shown in figure 3).

In order to test these hypotheses, a right-tailed, unpaired, t-test
was done on the entire dataset comparing the Z scores of the pro-
posed method to the other three methods. The resulting P-value was

calculated for each image (the probability that the null hypothesis
was true).

e (.28555: P-value for Proposed vs Choose maximum [13]
e (0.16438: P-value for Proposed vs Li [3]
e 0.00044: P-value for Proposed vs Loza [15]

Figure 4 shows qualitative improvements in the fusion results of
an example pair of multi-focus images (image pair index 39 within
the database). There is significantly less ringing on the left of the
figure “8” within the proposed method results compared to the near-
est performing alternative (choose maximum). Although the max-
imum P value is fairly large, its value depends on the number and
type of methods. Additionally, our proposed method gives the best
overall results compared to all other methods for a very large dataset
including a large number of modalities, domains and applications.
Improved results can be anticipated through the precise application
tuning of parameters not available for other methods.

5. CONCLUSION

This paper presents an effective new structure for image fusion us-
ing Bayesian belief propagation within each wavelet subband of the
DT-CWT. The use and definition of belief graph network probabil-
ities gives precise and application-specific tunable control of spatial
coherence throughout the fusion process. The results show quantita-
tive and qualitative improvements when using the developed method
within a DT-CWT structure. The defined method is also anticipated
to give improvements for other state of the art fusion methods us-
ing a principled and flexible method of controlling spatial coherence
within the spatial or transform domain. No such control is available
for previously developed methods. The structure also gives the po-
tential to integrate cross scale, orientation and temporal (in the case
of video sequences) graph connections that will be able to exploit
correlations in these directions. Furthermore, the presented method
is easily extendable to multiple image fusion methods whereby the
belief network has multiple node classes instead of just two (as was
presented in this case). Future work will focus on all these areas.
The method demonstrates qualitative and quantitative improvements
over comparable methods for a database of over 160 image pairs.
Previous studies do not commonly use such large databases.
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