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ABSTRACT

This paper presents a method for stereoscopic image stitch-
ing, which can make stereoscopic images look as natural as
possible. Our method combines a constrained projective warp
and a shape-preserving warp to reduce the projective distor-
tion and the vertical disparity of the stitched image. In addi-
tion to provide a good alignment accuracy and maintain the
consistency of input stereoscopic images, we add a specif-
ic restriction into the projective warp, which establishes the
connection between target left and right images. To optimize
the whole warp, a energy term is designed. It can constrain
the shape of straight line and vertical disparity. Experimen-
tal results on a variety of stereoscopic images can ensure the
efficiency of the proposed method.

Index Terms— Stereoscopic image, Image stitching, Im-
age warping, Image distortion, Vertical disparity

1. INTRODUCTION

Image stitching is a well studied topic and most widely used
in computer vision and image processing. However, most of
the current image stitching methods are designed for monoc-
ular image stitching [1–5]. Naively extending monocular
image mosaic algorithms to the stereoscopic image stitching
may damage the consistency of source stereoscopic images,
since two images in a stereoscopic pair contain an extra dis-
parity dimension, known as depth information. Moreover, a
small discrepancies in stitched images can bring an uncom-
fortable viewing experience to viewers, even make them feel
dizzy.

Recently, dedicated methods [6, 7] have been proposed to
stitch stereo images, which combined part of monocular im-
age stitching algorithms. A user study in [8] shared a sim-
ilar framework with a monocular mosaic method in using
a quad mesh to determine the warp. In addition, he added
specific feature correspondence constraints to reduce the per-
spective distortion. But it is limited by large camera trans-

This work is partially supported by the NSFC fund (61571259,
61531014, 61471213), Shenzhen Fundamental Research fund (J-
CYJ20160331185006518, JCYJ20170307153051701), Shenzhen Public
Technology Platform fund (GGFW2017040714161462)

lations. In [9], Yan et al. combined the half-projective and
content-preserving warp. Although it can reduce the prespec-
tive distortion, it breaks the stereoscopic consistency. Zhang
et al. [10] proposed a representative three-step algorithm to
keep the consistency of stitched left and right images by us-
ing the target disparity map. Nevertheless, the application of
parallax-tolerant method [11] may introduce projective dis-
tortion in the left panorama image. As shown in Fig.1(b),
resultant images have seriously projective distortion in build-
ings and trees (detailed in red rectangles). There also exists
curved line in the road and vertical disparity in the letter area
(detailed in yellow rectangles and enlarged in the top right
corner).

Research in [12] shows some issues that greatly affect a
natural 3D viewing experience of final stitched stereoscop-
ic images, and suggests to appropriately minimize effects of
these factors. A directly way to reach the purpose is com-
puting the binocular parallax to get the depth information at
each pixel from input images, then reconstructing the real 3D
scene, and projecting source images to a new coordinate sys-
tem by new camera configuration. However, this method re-
quires lots of calculations and depends much on the accura-
cy of the 3D reconstruction. Other methods have been pro-
posed for reducing these issues such as keystoning [13], dis-
tortion [14] and disparity [15], which carefully control the
horizontal disparity to make the image look more pleasant but
ignore the vertical disparity.

This paper aims to develop an algorithm for users to cre-
ate natural stereoscopic images with less distortion and verti-
cal disparity. To this end, we propose a novel method to stitch
stereoscopic images, which enormously reduce the projective
distortion and can obtain a natural high-quality images. Our
method firstly warps the images using a new point constraint
combined the target left and right images. Secondly, a shape-
preserving warp are accordingly adopted to stitch the images.
Finally, we use new energy terms to reduce the vertical dis-
parity, and linearly blend the warped input images to a final
stereoscopic image.

The rest of this paper is organized as follows: Section
2 formulates and presents the proposed stereoscopic image
stitching method. Experimental results are shown in Section
3. Conclusions are briefly remarked in Section 4.
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(a) (b)
Fig. 1. (a) Input left images. (b) The result samples from
Zhang’s [10].

2. THE PROPOSED METHOD

Our method proposes a new homography matrix to find a
warping function that maps pixels from the target images to
the reference images. It generates the correspondences from
input left images, warped-left and -right image. The new ho-
mography matrix can preserve the disparity consistency of the
source images with new point constraints. The image rectifi-
cation based on shape-preserving is used in non-overlapped
region to reduce the projective distortion. We note that s-
traight lines have high visual significance, the straight line
term and other constraints are utilized to optimize the energy
terms.

2.1. Constrained Projective Warp

To present our method in detail, we first denoted I1 =
(I1l , I

2
r ) and I2 = (I2l , I

2
r ) as two input stereopairs. Each

stereoscopic image has a left and right image, and I1l , I1r
are the reference images. As with similar approach of find-
ing point correspondences, we follow [1] to use RANSAC
to remove outliers from matched SIFT feature points. The
homography matrix H1 is estimated by the point correspon-
dences from (I1l , I

2
l ) (I

1
r , I

2
r ) and (I2l , I

2
r ). Sets of point-wise

matches are defined as:

(I1l , I
2
l ) ={(p1l (i), p2l (i))|p1l (i) = [x1l (i) y

1
l (i)]

T ,

p2l (i) = [x2l (i) y
2
l (i)]

T , i = 1 · · ·n1}
(1)

(I1r , I
2
r ) ={(p1r(j), p2r(j))|p1r(j) = [x1r(j) y

1
r(j)]

T ,

p2r(j) = [x2r(j) y
2
r(j)]

T , j = 1 · · ·n2}
(2)

(I2l , I
2
r ) ={(p2l (k), p2r(k))|p2l (k) = [x2l (k) y

2
l (k)]

T ,

p2r(k) = [x2r(k) y
2
r(k)]

T , k = 1 · · ·n3}
(3)

where n1, n2 and n3 denote the number of matched feature
points. (p1l (i), p

2
l (i)), (p

1
r(j), p

2
r(j)) and (p2l (k), p

2
r(k)) are

sets of all matched feature points in (I1l , I
2
l ), (I1r , I

2
r ) and

(I2l , I
2
r ), respectively. Let the first left imageI1l be the ref-

erence image. So formulate the transformation p1l = Hp2l :x1ly1l
1

 =

h1 h2 h3
h4 h5 h6
h7 h8 1

x2ly2l
1

 (4)

where the transformation H is donoted in a 3 × 3 vector,
which can be estimated using DLT in APAP warp [4] from
the weighted problem. The same in right images transforma-
tion. So for each grid mesh, a local homography is

hk = argmin
hk

n1∑
i=1

ωi
k ‖aih‖

2
, s.t. ‖h‖ = 1 (5)

where ai is the two linearly independent rows to contain
monomials. The weight ωi

k describes the influence of each
pair of point correspondence on the ith grid, i.e., wi

k =

max(exp(−
∥∥p2l (k)− p2l (i)∥∥2 /σ2), λ). The σ is the scale

parameter and λ ∈ [0, 1] is used to prevent numerical issues.
To keep the consistency of the stereoscopic image pairs,

we introduce the energy terms Ep to limit the local homogra-
phy. The energy term can be calculated as:

Ep =
1

n1

n1∑
m=1

γl(m)

∥∥∥∥ 1

ϕm
hp2l (m)− p1l (m)

∥∥∥∥
+

1

n2

n2∑
s=1

γr(s)

∥∥∥∥ 1

ϕs
hp2r(s)− p1r(s)

∥∥∥∥
+

1

n3

n3∑
q=1

∥∥∥∥ 1

ϕq
hp2l (q)− p2r(q)

∥∥∥∥
(6)

where γl(m) and γr(m) are binary values. If matched feature
points are in the left images, γl(m) = 1, otherwise, it equals
to 0. γr(m) is denoted likewise for the right image. ϕm,
ϕs and ϕq are the weight parameters, expressed as Euclidean
distance, i.e., ϕm =

∑n1

i=1

∥∥p2l (m)− p2l (i)
∥∥2, similarly, ϕs

and ϕq can be obtained.
For each local homography in equation (5), we calculate

its energy term using equation (6). So loop the process until
the iterative time equals to the initial set value, initialized as
2000. The new homography transformation H1 can be ob-
tained with the minimum energy value Ep. Then I2l and I2r
can be transformed into the coordinate system of reference
images I1l and I1r . We define transformed target images as
I2l
′ and I2r

′.

2.2. Shape-Preserving Warp

After applying the new homography matrix H1 to warp
the target image, the overlapping regions of two left im-
ages are better aligned compared to APAP [4] and global
transformation, as shown in Figure 2 (red and yellow box-
es). Nevertheless, the result suffers from obvious distortions
in the non-overlapping regions, like stretched shapes and
non-uniform scaling. Various previous work uses content-
preserving method to fine-tune images [7, 16], but this still
can not meet the requirement. For the non-overlapping re-
gions, A global similarity transformation is used to preserve
the shape.

In view of Chum et al. [17], changing the coordination
benefits to expose the distortion characteristics in projective
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transformation. So the original coordination of the target im-
age (x2, y2) is rotated to to the new coordinate system (u, v),
denoted as: [

x2l
y2l

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
u
v

]
(7)

where θ = arctan(h8/h7). Then put the Eq. (6) into Eq. (3)
to construct the mapping between (x1l , y

1
l ) and (u, v):[

x1l
y1l

]
=

1

1− cu

[
c1h1 + c2h2 + h3
c1h4 + c2h5 + h6

]
(8)

where c =
√
h27 + h28, c1 = ucosθ−vsinθ and c2 = usinθ+

vcosθ. Then divide the overlapping and non-overlapping re-
gions by the line u = u∗, learned from [18], which com-
bines the constrained projective warp in overlapping areas
with the shape-preserving transform H2 in non-overlapping
areas. To remain the continuous of the two warps in the re-
gion boundary, let H2(u∗, v) = H1(u∗, v) and the shape-
preserving warp H2 is solved as following:

H2(u, v) =
1

1− cu∗
(

[
(h5cosθ − h4sinθ)(u− u∗)
(h1sinθ − h2cosθ)(u− u∗)

]
+

[
h1c1 + h2c2 + h3
h4c1 + h5c2 + h6

]
)

(9)

2.3. Energy Optimization

In this section, target images are divided into a grid mesh,
so we can transfer the mesh warping problem into an energy
terms minimization problem containing alignment, similari-
ty, straight line and disparity constrains. To keep the natu-
ral shape of source images, straight line and vertical disparity
constrains are especially added. The final warp is fine-tuned
by minimizing total energy terms. Next, total energy terms
are depicted in detail.

Straight line term: To keep straight after warping, the
straight line term is introduced. We first use Hough transfor-
m to extract an infinite line (ρ, α), where ρ ≥ 0 and α ∈
[0, 2π]. Hence, a pair of matched corresponding lines are
(sl(αl, ρl), sr(αr, ρr)), where 0 < |αl − αr| < 20◦. The
straight line term is written as:

Esl =

∫
s

∥∥∥∥∥∑
s

[sinα̃s, cosα̃s] ·
[
c cosαs

−sinαs

]∥∥∥∥∥
2

ds (10)

where αs is the orientation of the warped line segment. α̃s is
the target orientation of the segment sl or sr.

Disparity term: Vertical and horizontal terms are used to
constrain the whole disparity. The disparity of both warped
feature points in image pairs should be as close as possible to
the original disparity.

Ed =

n3∑
j=1

∥∥p2l,y(j)− p2r,y(j)∥∥2 +∑
i

‖Di − di‖2 (11)

where Di = p2l,x(i) − p2r,x(i), represented the difference be-
tween abscissa of warped left and right images. di is the target

horizontal value computed from the Il and Ir.
Alignment and smooth terms: These two terms are de-

signed to better align warped and reference images and keep
the shape. The alignment term is defined below.

Eg =

n1∑
i=1

λi
∥∥p2l (i)− p1l (i)∥∥2

+

n2∑
i=1

µi

∥∥p2r(i)− p1r(i)∥∥2 (12)

λi is a binary value. If the warped feature points are in left
images, we set it 1, otherwise it is 0. The µi is obtained as
the same way for right images. As the Hessian of the warping
function should be zero, we use the constraints es in [19] as
Es = ωes to maintain smooth.

The final energy term can be enumerated as:
E = β1Eg + β2Es + Esl + Ed (13)

β1 and β2 are the weighted parameters initialized as 0.8 and
0.3.

Finally, the α blending method is applied to create
stitched left-view and right-view images. The final red-cyan
anaglyph with the proposed warp is shown in Fig.2(b).

(a) (b)
Fig. 2. (a) Above:the result by warping with global homog-
raphy. Below: the result of APAP [4]. (b) Above: our result
with constrained projective warp. Below: final result of the
proposed warp. Some details are highlighted and enlarged

3. RESULTS

In this section, a set of experiments are conducted in MAT-
LAB R2014b development environment on a PC with a
3.20GHz CPU and 4GB RAM. Figure 3 shows part of the test
images on stereoscopic image dataset1 provided by Zhang
et.al [10] using stereo cameras. To evaluate the efficiency of
our method, we compared our method with other approaches,
including APAP [4], AutoStitch [1], Zhang [10] and Yan’s [7].

Figure 4 compares the results between APAP, AutoStitch
and our method. We can see that APAP in cannot guarantee a
good alignment in the overlapping regions, such as ghosts are
occur in the short sleeve and hat (yellow boxes). There also
exists large vertical disparity in APAP (orange boxes). Both
APAP and AutoStitch cannot keep the straight shape of the
street lamp detailed in blue boxes.

1http://web.cecs.pdx.edu/ zhangfan/stereostitch/index.html
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Figure 5 compares Zhang’s method [10] and the proposed
method. Zhang’s method (Fig. 5(a)) could align the input
images without ghosts but ignored distortion (red boxes). As
shown in the last column, there are vertical disparity in the en-
larged region. In contrast, our method (Fig. 5(b)) can deliver
a natural viewing experience with less distortion and vertical
disparity.

Fig. 3. Test Images. Top to bottom: Building, Monument,
Shop, Room and Campus.

Figure 6 shows final anaglyph versions of the stereopairs
by Yan’s method [7] and our method. In Fig. 6(a), Yan’s
results could lead to a good result with little vertical dispar-
ity. However, there are some distortions in edge areas. The
proposed method (Fig. 6(b)) lessens the projective distortion.

Fig. 4. Comparison results with APAP [4] and AutoStitch [1].
From top to bottom: APAP, AutoStitch, and Our method. For
better comparison, some details are highlighted.

In our experiments, we calculates the average absolute
vertical disparity (AVD) to evaluate the quality of stereoscop-
ic images. Here, the AVD is defined as:

AVD =
1

n

n∑
i=1

|V Di| (14)

where m is the number of matched feature points, and V Di

denotes the absolute vertical disparity of the ith matched fea-
ture points between stitched left and right image. In our ex-
periments, we use SIFT to extract 5000 feature points. Table
1 shows the AVD of all test images in Fig. 3. From the table,

Table 1. Average Vertical Disparity(/pixel)
Dataset AutoStitch APAP Zhang’s Proposed
Building 3.42 6.13 1.74 1.59
Monument 4.34 5.22 1.89 1.32
Shop 2.67 3.64 1.54 1.27
Room 2.06 4.80 1.07 0.91
Campus 7.96 8.69 1.98 1.68

APAP has the largest vertical disparity, while AutoStitch and
Zhang’s method have relatively small value. The proposed
method can reduce the vertical disparity.

(a) (b)
Fig. 5. Comparison results with Zhang’s [10]. (a) Results of
Zhang’s. (b) Our results.

(a) (b)
Fig. 6. Comparison results with Yan’s [7]. (a) Anaglyph im-
ages of Yan’s. (b) The result of our method.

4. CONCLUSION

This paper describes a natural shape-preserving stereoscop-
ic image stitching method, which can create natural-looking
anaglyph images and deliver a pleasent viewing experience
to viewers. The proposed approach combines the constrained
projective warp with the shape-preserving warp, which can
handle vertical disparity and distortion to some extent. It
weakly relies on the choice of the boundary of two warping
regions. Experimental results have shown that the proposed
method can produce a natural stereoscopic image.
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