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ABSTRACT to the learning strategies, SISR methods based on external

L inabased sinale i uti SISR th (ﬁictionaries can be further divided into methods based on
earning based single image super resolution ( ) metho eighbour embedding [1, 2], sparse coding [3, 4], direct

have achieved n_ot_able results, however, they require lar%apping [6, 7, 8,9, 10], and deep learning [11, 12, 13].
datasets for training, and may struggle when there is

a mismatch between the testing and training data. Despite their efficiency, methods based on external

overcome these drawbacks, we propose an approach namcgationaries require a large dataset for training, whichyma
U-FRESH, which only req,uires a small dataset bu,t calot be available. Moreover, the SR performance is seriously

achieve state-of-the-art performance also in the presehce afftect?d by :he tS|m|Ia;]rlty betwettaln the trt?]'mgg alnd testltng f
training and testing mismatches. We accomplish this b ata. In contrast, we have recently seen the developments o
leveraging a method called FRESH, which enhances th ethods which do not require external dictionaries, butwhi

image resolution using FRI theory. We start upscaling fronf © approximately as eff|C|er_1tas those using external eatas
the FRESH generated low resolution image. To minimize thé&9- [15, 16, 17.’ 18]2 In part|lculallr,.FRESH [.15] Ievqragast
reconstruction error, we propose a new regression seﬂectii?eory of sampling signals with finite rate of |nr10vat|on ‘FR.
technique to make the mapping more reliable and robust, a 9, 20] 1o solve the SISR problem and obtains competitive

a wavelet based back projection technique to improve thgesults. Specifically, FRESH treats the LR image as the low-

quality of the reconstructed image. Based on U-FRESH wRass version of a wavelet decomposition and uses FRI theory

also propose a new framework based on JPEG 2000 forima 2 infer the missling wayelet coeﬁicignts. Each Image line is_
compression. Numerical results show that our U-FRES odeled as a piece-wise smooth signal, which can be split

0 a piece-wise polynomial and a global smooth functions.

method achieves state-of-the-art performance in SISR ar{H: ) :
provides better compression results than JPEG 2000. © former IS reconstru.cted using FRI theory and .the latter
using linear reconstruction. Although FRESH obtains good
Index Terms— single image super resolution, image results, the limitation is that the piece-wise smooth model

compression, local linear regression. assumption is not accurate. Therefore, FRESH performs well
on edges but may struggle otherwise.
1. INTRODUCTION In this paper, we aim to get the best out of the

Single image super resolution (SISR) aims to recoverahigﬂ'\’o_ approag:hes, and We_do so by i”thd“Ci”Q_ U-FRESH
resolution (HR) image from a single low resolution (LR) which combines FRESH with a new low-complexity learning

one. This inverse process is highly ill-posed, because &he approach. The key insight here is that learning from externa

image may correspond to many different HR images. In ordeflatasets is helpful but if strong priors are available, the

to reduce this ambiguity, many methods have been proposerﬂa'n'ng complexity and the size of the external datasets ca

which can be typically classified into two broad categories.,be significantly reduced. Compared to other methods, an

methods that use external dictionaries, e.g., [1, 2, 3, 8, 5, important advantage of U-FRESH is that we can achieve

7.8,9, 10, 11, 12, 13] and methods based on self-learning aetter SISR performance with less training images, i.e.,

some forms of constrained reconstruction that do not requirOnly a fraction of others [4, 5, 8, 9, 7, 10, 11, 12, 13],

external datasets, e.g., [14, 15, 16, 17, 18]. Algorithnas th apd we are more resilient to the mism.at'ch (ie., us.ing
use external dictionaries are based on the idea that eacitn pafj'fferent blurring kernels) between the training and tegti

in one image can find similar patches in other images. Bfata. For re_solutlon e_nhancement, U'F,RESH employs _the
retrieving the high frequency component from these simila ocal regression learning apprqach as in [7, 10] but with

patches, the current patch resolution can be enhanced. TR&ME important changes: 1,) d|f.fer.ent from other methods
most popular way to retrieve the high frequency is by leagnin which start upscaling from bicubic interpolated LR images,

the relationship between LR and HR patches. Accordind"e start fro_m a higher position, the FRESH generate(_j _LR
images. This allows us to use a smaller dataset for training,

Xin Deng is supported by Imperial CSC scholarship. because the LR images generated by FRESH already contain
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Fig. 1. Framework of the proposed compression method.

many high-frequency details. 2) a new regression selection
algorithm is proposed to make the mapping more reliable and G
robust.

In addition to SISR, we also apply U-FRESH to image e e
compression.  Since U-FRESH is built around FRESH ™ L rsiing images
which treats LR images as low-pass versions of a wavelet
decomposition, U-FRESH is a natural candidate to imprové&ig. 2. The process of obtaining LR images from HR images.
the performance of JPEG 2000 [21], which is a state-of-theFor each centroid, we further seleétnearest neighbours
art image coding system based on wavelet technology. W form its cluster. We then calculate a linear regression
focus on low bit-rate settings and in our approach, as showpri}iI;1 for each cluster, which maps the LR samples in the

in Fig. 1, instead of directly compressing the HR imagecjuster to the corresponding HR samples with the minimum
we perform discrete wavelet transform (DWT) on the HRgrror:
image and only compress the low-pass subband using JPEG
2000. After that, we apply U-FRESH on the decoded low-
pass image to upscale it to the original resolution. In trag,w
we can get good compression results even at low bit-rates.
The rest of the paper is organized as follows. In Section v IvT s
2, we introduce the proposed U-FRESH method and showhere.{hi j=1 and{L; -y indicate the HR and LR features
’ o . - . in thei-th clusterC;. Here,\ is a regularization parameter.
how we tailor it for image compression. In Section 3, WeR\ denotinaH, — (h!, k2, ... hJ] andL; — [€}, €2, ... ¢
show the performance of U-FRESH in both SISR and imag?z); can be \?vritzte; as“ ir el i = [, 85, &7 ]
compression scenarios. Section 4 concludes this paper.

2. PROPOSED APPROACH R, = ar%min\lHi — R,Li|5 + M| Ri %, ®)
2.1. Training

2D wavelet
decomposition

J
R; =argmin » |l — R€!|3+ N|Ri|%, (2
Rv

i

=1

nd ridge regression gives the following closed-form sotut

The training set contains only 20 images randomly selecte )

from BSD300 datas&twhich is much less than those used in _
other methods. Following [15], we first perform 2-D DWT R, = H;L (L.L{ + \I)™, )

on the HR images to extract the low-pass sub-bands. We thevhereT is the identity matrix. The value of is selected via
apply FRESH [15] on the low-pass sub-bands to obtain LRhe validation set, through which we choose the value lepdin
images, as Fig. 2 shows. to the minimum regression error.

Patch pairs selection. After obtaining the LR and HR Here, we decided to use linear regression to learn the
patch pairs, we perform feature extraction. The LR-HR patcimappings, instead of other mapping algorithms such asepars
pairs are normalized first, then as in [10], we use the meareoding, because linear regression is more suited to recmbst
removed LR patch as the LR feature. The HR feature is théhe smooth and textured regions where the FRESH algorithm,
HR patch after removing the mean value of its correspondingrhich our U-FRESH is based on, struggles.

LR patch.. For effecti.ve training, we remove the smoothz_z_ Reliable Regression Selection

patches with small variance. We also discard the patch pai
which have low correlation coefficients (CC), since we nmtic
that patch pairs with low CC values can degrade the training _ .

performance. The CC value between the LR and HR featur n input LR feature, the most important step is to select
vectorsf, and;‘h is given by a reliable regression which can map the LR feature to HR

feature with the smallest error. The traditional way is todo
for the nearest centroid to the input LR feature and select

Reter training, we have obtained regressions{R;}X,
%)r clusters with centroiddC;}% . In the testing, given

(fi,fn)

pfi,fr) = Ifell2lfall2’ @ its corresponding regression matrix to do the mapping [10].
o ) However, this mapping can be unreliable, especially when
where(.) indicates the inner product. the LR feature is located far away from the centroid. Dai

Linear regression.We use K-means clustering alglcgnthm et.alhave realised this problem and they proposed to optimize
to split the training set i< groups with centroid$C;}i,.  the regression calculation by clustering samples based on
1The training dataset used in this paper can be downloadeu fro th€ regression instead of sample values [9]. Different
https://drive.google.com/file/d/0Bzxdhi861FZacjlkekIF JCeDg/view?usp=shdtiogn [9], we propose a new technique to select the most
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reliable regression for the input LR through estimating theTabIe 1 Performance of U-FRESH and other methods with

reconstruction error, with the following three steps: ; . )
Step 1. Given an input LR feature, instead of searchingb'or4'4 as the blurring kgrnel, with the best scores bold and
he second bests underlined.

for its nearest centroid, we use k-nearest neighbour (kNN
algorithm to search for itsV nearest centroids. Typically, [Scaling facto 2x 4x
N = 3. Dataset Setb Setl4 Set5 Setl4

, PSNR SSIV |[PSNR SSIV [PSNR| SSIV |PSNR SSIV
Step 2. From the samples in théV nearest clusters, | —g czmr3s7 6537930 150 8804 27.56/0.8072 25.58|0.7064

we select) nearest samples to the LR input. Theke Zeyde[4] |34.83/0.9459 31.31|0.8989 28.68|0.836(] 26.37|0.733§
LR samples form a subs&},,, and their corresponding HR GR[5] |33.96]0.9394 30.71/0.894( 28.15|0.8170 25.95|0.7217
samples form a subsst, . ANR[5] |34.720.9453 31.18|0.8987 28.59|0.832( 26.26|0.7310

NE+LLE [1] | 34.68|0.9444 31.15|0.8976 28.52|0.8311 26.23|0.7300)
Step 3. From the N nearest clusters, we can hake A+[8] |35.41]0.9491 31.65(0.9022 29.16|0.8504 26.70|0.7440

regressions forming a regressionBet. For each regression, | selfex[18] |34.66|0.9439 31.160.8954 28.30|0.8296 26.09|0.731(
we calculate its reconstruction error on tld samples |SRCNN [11](35.47|0.9493 31.68|0.9024 29.17|0.8504 26.74|0.7447
gathered in Step 2, and choose as the regression the one thaRESH [15]] 35.38/0.9487 31.59)0.9012 29.43 0.8551 26.77)0.7457

: ) Ours | 35.65/0.9496 31.93|0.9035 29.650.8594 26.95|0.7494
leads to the smallest error, as formulated in Eq. (5):

Table 2. Performance of U-FRESH and other methods for

M
R= argmm% Z |hm — Rem |3, (5)  4x upscaling, with arbitrary blurring kernels.

" m=1 Blurring bior2.4 bior6.8 rbio2.8 |linear spling

whereR € {Ry}, by, € {S%I}, ande,, € {Slj\/l}' kernel [ Set5][Set14 Set5[Set14 Set5[Set14 Set5]Set14

furth h N ved i i CSCN[12] |24.44[23.12|28.2326.27| 28.09 26.30, 24.96 23.42)
To further enhance the super-resolved image quality, We | \psRy13] |24.30 22.7328.32 25.93 28.83 26.55) 24.78 22.95

use another two important steps: the wavelet based back |FRESH [15]29.33 26.74|29.5426.89 29.63 26.96|29.10| 26.54
projection (WBP) and ensemble learning based resolution Ours  |29.54/26.87|29.68 26.96/29.71] 27.0029.40 26.77|
enhancement. WBP is to ensure that the estimated HE

image is consistent with the input LR image. Recall thai . All the test pictures were changed from RGB to YCbCr

we treat LR images as the low-pass sub-band of the H rmat and only the luminance channel was used for testing.

images. Thus, given the super-resolved HR image, we Parameters setting In the training, the threshold for
do wavélet dec,omposition and replace its low-pass ’banhemoving smooth patches is 0.5 and the threshold of CC value

with the original LR input but keep its high-pass sub-banddS 0.65. In the regression stepis 0.01. In reliable regression

unchanged. Finally, benefitting from the power of ensemblé:'elecnon’ we us&'=2048,N'=3 and)/=128. The patch size

learning [22], we create different variations of LR imagesIs 5x5 for upscaling by 2.and>99 for upscallng b)./ 4. .
through affine transformation, i.e., four LR variations twit SISR performance Since the blurring kernel in practical

rotations{0, 90, 180, 270} and average their HR estimates to scenario usually cannot be predicted, we evaluated the SISR

obtain the f}nai HR7image performance of our method in two cases: 1) the training
In this paper, the cascaded structure is employed t nd_ testing processes use the same blurring kgrnel; 2) the

implement upscaling for scaling factors larger than 2,,e.g. esting process uses arbitrary blurring kernels diffefearh

4x. We first do upscaling by scaling factor 2, and then aftelIhat used during the training. Table 1 shows the PSNR and

error correction by WBP, we further do upscaling by 2. NoteSSIM [24] results of our and other methods in the first case.

: . or fair comparison, the blurring kernel in all methods was
hat th nd U-FRESH regr nsn re-trained. ~ . N L .
that the S?CO_ du ) SHreg essm. s need to be re-trai edl;odlfled to bebior4.4 as [15], and all the dictionaries and
2.3. Application to image compression

network were retrained using this kernel. We can see that
To apply U-FRESH to image compression, we need tqur method consistently outperforms all the other methods.
establish a training dataset different from that of SISR. Ingpecifically, for 2« upscaling, we improve PSNR by 0.18
the context of image compression, as shown in Fig.1, th@B in Set5 and 0.25 dB in Set14, compared with the second
U-FRESH algorithm is used to map the decoded low-pasgest SRCNN [11]. For # upscaling, we achieve 0.22 dB
images to the HR images. Thus, to prepare the LR trainin@SNR improvement in Set5 and 0.18 dB improvement in Set
images, we first do DWT on the HR image to get the low-pasg 4, compared with the second best FRESH[15]. Note that we
images and then apply JPEG 2000 to compress them. Aftgjnly use 20 training images while others [1, 3, 4, 5, 8, 11] use
that, we perform FRESH on the decoded low-pass images 1 images. We can use less training images and still achieve
obtain the LR training images. The mappings between the LRetter SR performance, because the FRESH generated LR
and HR pairs are re-trained for image compression. images already include some high frequency details which
3. EXPERIMENTAL RESULTS dp not need tq be recgvered again from trair_ling images. For
visual comparisons, Fig. 3 shows the 4pscaling results on
In the experiments, two datasets were used for testind@utterfly We can see that our U-FRESH method can generate
including 5 images from Set5 [23] and 14 images from Setl4harper edges with less ringing artifacts.
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(e) A+ (24.5/0.8469) (f) SRCNN (25.0/0.8590) (9) FRESH (25.6/0.8738) (h) Ours £6.30.8874
Fig. 3. SISR results oButterflyby our and other methods with<4upscaling. The values in the bracket are PSNR/SSIM.

Table 2 presents the PSNR results of our method in the
second case, i.e., the testing process uses differentl&erne
from the training which usesior4.4. We compare the results
with other two state-of-the-art deep learning based method
CSCN[12] and VDSRJ[13], and we can see that our method is
more resilient to the mismatches in the blurring kerneldevhi
[12] and [13] can be seriously affecfea.g.,bior2.4kernel.

Image compression performance We compare our
compression results with JPEG 2000 at different bit rates,
with the improvements shown in Table 3. As can be seen, our
compression method improves significantly over JPEG 2000
at small bit rates. Specifically, at 0.2 bit per pixel (bppg w
achieve nearly 0.4 dB improvement over JPEG 2000 in Set
14. Fig. 4 compares visually the compressed images and
we can see that our method achieves higher reconstruction
quality than JPEG 2000.

Table 3. The improvement of our method over JPEG 2000.

Bitrate Set5 Setl4
(bpp) PSNR | SSIM PSNR | SSIM
0.08 | 0.0987 | 0.0071| 0.2451 | 0.0045

0.1 0.1807 | 0.0080 | 0.3423 | 0.0090

(a) Zebra (b) 25.12dB/0.7786  (c) 25.94dB/0.7924

- N\ N TGN
T NN
(d) Foreman (¢) 35.79dB/0.9333 () 36.85dB/0.9418

0.3

0.3635

0.0086

0.1786

4. CONCLUSION

0.2 | 0.3337 | 0.0101 | 0.3985| 0.0000 Fig. 4. Results of images compressed by JPEG 2000 and
-0.0039

our method. The compression bitrate is 0.3 bpp. The values
shown are PSNR/SSIM. Better seen in enlarged version.

regression selection technique to make mapping robust and

In this paper, we propose an U-FRESH method for SISR andse wavelet based back projection to eliminate recondruct
image compression. Benefitting from FRESH, our methorrors. Our method combines the merits of learning based
only needs a small dataset for training. We develop a réiabland signal processing based methods, achieving nearly 0.3

2Here, we simply use the trained network of [12] and [13] whice
bicubicas training kernel. In our method, the training kernddiar4.4, which

is also different from the testing kernels.

1810

dB PSNR improvement over other state-of-the-art methods in
SISR and 0.4 dB improvement over JPEG 2000 in low bit-rate
image compression regime.
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