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ABSTRACT
Based on psychophysical experiments, we propose an asymmetric
3D just noticeable difference model (AJND) in the DCT domain tak-
ing into consideration the binocular properties of the human visual
system (HVS), the background luminance and the spatial frequency
of each DCT component. Subjective evaluations of the proposed
AJND demonstrated that our proposed model offers good percep-
tual quality and could tolerate more distortion with PSNR reaching
24.19 dB. The proposed model has been used to perceptually opti-
mize MV-HEVC by suppressing the residual transform coefficient
that are lower than AJND values. Experimental results show that the
proposed algorithm can achieve up to 14.62% bit-rate saving while
preserving the perceived image quality.

Index Terms— Contrast sensitivity, Just Noticeable Difference,
Stereoscopic, MV-HEVC

1. INTRODUCTION
Stereoscopic 3D video (S3D) is considered as the widely used im-
age/video format due to its coding, transmission and display sim-
plicity among other video formats. In the same vein, stereoscopic
video can be easily adapted in communication applications with the
support of existing technologies. However, for video coding appli-
cations the coding performance of a stereoscopic image/video could
be further enhanced by reducing the perceptual redundancy in the
scene. To address this problem, research efforts have been made to
exploit the masking effect which is considered as one of the most
complex properties of the human visual system (HVS) that refers to
the perceptibility of one signal in the presence of another one in its
spatial, temporal, or spectral vicinity [1]. The masking effect could
be modelled by estimating an adaptive threshold known as the just
noticeable difference (JND) referring to the maximum difference not
perceived by the HVS.

Usually, JND models incorporate contrast sensitivity, luminance
adaptation and contrast masking effects. Sophisticated JND compu-
tational models have been proposed in the literature and have been
widely applied to perceptual image and video coding schemes [2,3],
image/video quality assessment [4, 5] and watermarking/data hid-
ing [6,7]. Typically, the state-of-the-art JND models can be classified
regarding the applied domain into two categories : pixel-based do-
main [8–10] and subband-based domain [11–16] JND models. The
thresholds for pixel-based (spatial) JND models are estimated di-
rectly form pixel luminance values. For subband-based domain, the
thresholds are estimated over a transformed subband (DCT, DFT,
Wavelets, etc). An early DCT-based JND model was proposed by
Ahumada and Peterson [16], which estimates the threshold for each
DCT component by using the contrast sensitivity function (CSF).
Watson improved the threshold estimation proposed in [16] by in-
corporating the luminance adaptation (LA) and the contrast masking

effects together with the CSF in the so-called DCTune [17]. Nev-
ertheless, the vast majority of proposed DCT based JND models in
the literature account only for cues related to 2D image and video
contents and cannot accurately estimates the thresholds in the DCT
domain when viewing 3D stereoscopic scenes.

To the best of our knowledge, there is no study of DCT based
JND in the 3D stereoscopic images. So, in this paper, we propose
a new asymmetric DCT based JND model allowing to estimate the
thresholds in the presence of asymmetric distortion. We also propose
a saliency modulation factor to be incorporated into the proposed
JND model for coefficient suppression in the MV-HEVC.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce our proposed asymmetric JND for stereoscopic
images. Perceptual validation of the proposed AJND model is pre-
sented in Section 3. The application of the proposed model on the
MV-HEVC and the results are presented in Section 4. Finally, the
contributions of this paper are summarized and the future work is
outlined in section 5.

2. PROPOSED ASYMMETRIC 3D-JND MODEL
Our AJND (Asymmetric Just noticeable difference) model is ex-
pressed as the product of a basic threshold generated from the CSF
and the luminance adaption factor. AJND is scaled by an adjustment
factor according to the binocular disparity of the DCT block. The
AJND model estimates the binocular distortion based on a generated
DCT noise on the left view and is formulated as:

AJND(w,ψ, bg,D) = S ×N × Tbasic(wi,j , ψ)× αlum(w, bg)× T (D)(1)

where Tbasic is the basic threshold generated by a spatial CSF
and the αlum is the luminance adaptation effect modeled to enhance
Tbasic values accuracy based on the background luminance bg and
the spatial frequency. S is the summation effect that compensates the
(i, j) AJND values to estimate the AJND for all DCT coefficients (S
is set to 0.125 [12]). T (D) indicates the disparity adjustment factor
defined in Eq.10 with D being the block disparity. In 1, w = wij

stands for the spatial frequency of the (i, j) DCT coefficient, which is
expressed in cycles per degree (cpd) and calculated using the follow-
ing formula, where θx and θy are the horizontal and vertical visual
angles respectively.

wij =
1

2N

√(
i

θx

)2

+

(
j

θy

)2

(2)

For each (i, j) DCT coefficient, ψ isthe directional angle be-
tween vertical and horizontal spatial frequency components (wi,0

and w0,j).

ψij = arcsin

(
2.wi,0.w0,j

w2
i,j

)
(3)
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2.1. Experimental setup

We conducted several perceptual experiments to measure the AJND
thresholds regarding the binocular disparity and luminance adaption
effect in the DCT domain. The experiment settings are presented in
Table 1.(left). For the psychovisual experiments, the AJND values
are measured for a zero disparity between both views of the test im-
age (test image located at the screen plan). For each view, there is
a test image of size 256 × 256 that resides in the parafovea region
with a central test patch of size 32 × 32 (stimulus) corresponding
to the foveal area. In this experiment, the DCT distortion is inserted
only in the test patch of the left view as shown in Fig. 1.(right).
To present each view to the appropriate eye, the subject has worn
passive glasses.

Table 1: AJND psychophysical experiments description.

Experimental setup

Display Hyundai S465D

Type and size LCD 46”
Resolution 1920× 1080 (Full HD)
Color Support 24-bit
Number of subjects 13
Viewing distance 2×H(screen Height)
Ambient illumination 100 lux
Illumination behind the glasses 26 lux

ITU-R comparison scales

Score Description

-3 Much worse
-2 Worse
-1 Slightly worse
0 The same
1 Slightly better
2 Better
3 Much better

During the conducted experiment, the subject adjusts the in-
jected noise in terms of amplitude of the DCT frequency compo-
nent until the resulting distortion becomes binocularly visible. When
more than 50% of the subjects detect the distortion, the injected
noise is considered as above the AJND threshold. Furthermore, we
assume that the DCT coefficients of the upper-right and down-left
triangle of the 8 × 8 DCT frequencies are nearly symmetric. By
taking in consideration this property, we have selected 15 DCT co-
efficients for the psychophysical tests as described in Fig. 1.(left).

background 112

25
6

Injected noise in the

(0,5) DCT coefficient

32

Fig. 1: (left): Selected subbands of the 8×8 DCT (cell in red denotes
the selected subbands). (right): Example of left view image distorted
by injecting noise in the (0,5) DCT coefficient.

To avoid the effect of contrast masking, we have used ten test
images with constant background luminance levels (bg). The set of
bgs is defined from dark to bright gray levels as follows:

bg = {13, 25, 51, 77, 102, 128, 153, 179, 204, 230} (4)

This experiment consists of 150 pairs of test images and DCT coef-
ficients that are presented to the subject in a random way to avoid
any kind of learning during the test. Each test took about 40 minutes
with 5 minutes of rest after 20 minutes.

2.2. Basic AJND threshold

Fig. 2 illustrates the AJND values of all tested DCT coefficients
according to the set of average background luminance bg. For most
of the DCT coefficients used in the experiment, the AJND showed
minimum values at the luminance background bg = 51. At this lu-
minance level the effect of luminance masking would have a minor

effect on the basic thresholds. So, for modelling the generated CSF
of this JND profile we have considered only the threshold values
measured at the luminance background bg = 51. The oblique effect
is one major factor that has to be considered when developing a basic
DCT threshold [16]. This effect consists of the directionality of the
HVS and considers a higher sensitivity for vertical and horizontal
frequencies than diagonal ones. By taking advantage of the symme-
try between DCT coefficients and the oblique effect, we need only to
model the measured threshold values of diagonal and horizontal co-
efficients to obtain the Tbasic threshold. As suggested by Fig.2.(left),
the threshold of the horizontal and diagonal DCT coefficients could
be modeled using a quadratic polynomial.
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Fig. 2: Measured AJND threshold values: (left) JND threshold val-
ues from 0 to 13.33 (right) JND threshold values from 15.09 to
23.33.

The measured AJND values of DCT coefficients along diagonal
and horizontal positions presented in Fig. 3, gradually increase along
the spatial frequency axis. The least mean squared error method has
been used to get the best fitted values of parametersD(w) andH(w)
described previously. The obtained formulation is given in Eq.5.{

D(w) = 0.0391.w2 − 0.2167.w + 1.676
H(w) = 0.0315.w2 − 0.2914.w + 1.676

(5)

Therefore, the basic threshold Tbasic is expressed as:

Tbasic(w,ψ) = D(w) + (H(w)−D(w)).cos(ψ)2 (6)
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Fig. 3: (a) Measured AJND values at bg=51 along the horizontal
and diagonal DCT coefficients directions and their fitted curves. (b)
Modeled Tbasic. (c) LA values at bg = 13 and bg = 230 and their
modeled curves α13 and α230. (d) Modeled αlum.
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2.3. Luminance adaptation

According to the Weber-Fechner law [18], the minimum change in
luminance ∆I is a constant ratio of the original intensity I . There-
fore, higher JND threshold values occur in brighter and darker re-
gions knowing that the minimum thresholds has been found for bg =
51. Consequently, the luminance adaptation effect is shaped in V-
shape curve according to bg. Since the proposed basic threshold
Tbasic(w) has been modeled only for background luminance inten-
sity bg = 51, the rest of background levels have to be considered
using the luminance adaptation effect αlum. αlum can be formu-
lated as :

αlum(w, bg) =
AJND

AJND51
(7)

where AJND51 is the threshold values at bg = 51. We first
model α13 and α230 that represent the αluma at bg = 13 and bg =
230 respectively. Then, we extend to αlum in terms of w and bg.
α13 and α230 are defined as:

α13(w) = −20.045× 10−4 . w2 + 9.612× 10−3 . w + 1.746
α230(w) = 5.511× 10−3 . w2 − 0.2452 . w + 5.226

(8)
Fig. 3.(c) and Fig. 3.(d) show the measured values of α13, α230

and their modeled curves respectively. Based on α13 and α230, we
define αluma for all values of bg as :

αlum(w, bg) =



1 + (α13(w)− 1)×
(

(51− bg)

38

)5

, bg < 51

1, bg = 51

1 + (α230(w)− 1)×
(

(51− bg)

179

)1.8

, bg > 51

(9)

2.4. Proposed disparity adjustment factor for AJND

It has been proven in [19] that the HVS is less sensitive to depth dif-
ferences of objects at larger position from the fixation plane. In [20],
authors assume that spatial distortion in objects with larger depth are
less sensitive for the HVS. Based on empirical and geometrical stud-
ies, we defined T (D) as the adjustment factor of AJND to elevate
the AJND value according to the disparity value of the block. Since,
the AJND is estimated for a block of 8× 8 DCT, an average dispar-
ity value for each DCT block is calculated based on a pre-computed
disparity map for each stereo-pair. T (D) is expressed as the ratio
between the relative depth d and the depth Z to the observer:

T (D) = 1− d

Z
(10)

The variation of the proposed adjustment factor values according
to the depth z and the relative depth d is illustrated in Fig. 4.(a).

3. PERCEPTUAL VALIDATION OF THE AJND MODEL

To evaluate the effectiveness of the proposed DCT-based AJND,
we performed a psychophysical validation based on the Adjectival
categorical judgment methods as recommended by ITU-R BT.500-
11 [21]. The experimental conditions remain the same as those given
in Table 1 except for the viewing distance that has been set to four
times the picture height. The observers are asked to evaluate the
quality of the right stereoscopic image (distorted) in reference to the
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Fig. 4: (a): Disparity adjustment factor relative to the depth and the
relative depth of the object. (b): Principle of stereo-geometry. The
angular disparity induced by point B δ = αR − αL..

left stereoscopic image (original) and give quantitative scores as de-
scribed in Table 1.(right). Nine 512 × 512 uniform luminance im-
ages, for each image five levels of disparity have been applied. Fur-
thermore, we computed the PSNR between the left and right views
in the stereoscopic image in order to measure the amount of noise
that the JND model can tolerate.The AJND noise is injected in all
8× 8 DCT coefficients as follows:

C
′
(k, i, j) = C(k, i, j) + S(k, i, j)×AJND(k, i, j) (11)

where C(k, i, j) is the (i, j)-th DCT coefficient in the (k)-th
block andC

′
(k, i, j) is the noise-contaminated DCT coefficient with

the AJND. S(k, i, j) is a bipolar random noise that takes a value
of 1 or −1.

Table 2: Performance of the proposed AJND model in term of PSNR
between the left and right images, and subjective scores (MOS).

Crossed disparity No disparity Uncrossed disparity
Bg 20 10 0 20 10

PSNR MOS PSNR MOS PSNR MOS PSNR MOS PSNR MOS

13 31, 64 0, 00 30, 83 0, 10 30, 07 −0, 10 29, 38 −0, 70 28, 75 −0, 70
25 33, 35 −0, 60 32, 59 −0, 60 31, 91 −0, 70 31, 30 −1, 00 30, 75 −0, 90
51 34, 73 −0, 10 33, 91 −0, 90 33, 16 −1, 10 32, 47 −1, 20 31, 84 −0, 90
77 35, 00 −0, 40 34, 18 −0, 60 33, 43 −1, 20 32, 74 −1, 20 32, 10 −1, 20
128 34, 56 −0, 10 33, 74 −0, 20 33, 00 −1, 00 32, 31 −1, 10 31, 67 −1, 00
153 32, 31 0, 00 31, 49 −0, 40 30, 75 −0, 70 30, 06 −1, 10 29, 42 −0, 80
204 30, 91 −0, 30 30, 09 0, 00 29, 34 −0, 50 28, 65 −1, 00 28, 02 −0, 90
230 27, 96 −0, 30 27, 14 −0, 20 26, 39 −0, 40 25, 70 −0, 70 25, 07 −1, 20
255 26, 68 0, 00 25, 96 −0, 40 25, 31 −0, 10 24, 72 −0, 10 24, 19 −0, 20

avg 31,90 -0,20 31,10 -0,36 30,37 -0,64 29,70 -0,90 29,09 -0,87

The PSNR and the mean opinion scores (MOS) for each image
at different disparity levels are given in Table 2. It can be noticed
that PSNR can reach lower values for brighter background lumi-
nance images that can reach 24.19 dB with less perceived distortion.
This very significant tolerance to noise can be explained by the less
sensitivity of the human eyes for distortion in lighter images. It is
obvious from Table 2, that images at closer depth have higher val-
ues (less injected noise) than images at deeper depth. According to
MOS values, the noise sensitivity decreases with depth position of
the image.

4. AJND COEFFICIENT SUPPRESSION IN MV-HEVC

This section details the use of the proposed AJND model to percep-
tually optimize MV-HEVC based on the transform coefficient sup-
pression. The later process suppresses every residual transform co-
efficient that does not exceed the AJND value. In order to effectively
integrate the proposed model into MV-HEVC, we propose to incor-
porate the contrast masking as in [3]. Furthermore, we propose to
control the intensity of the JND threshold values according to the
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visual attention generated by the saliency map from each frame in
the left view video. Since HEVC uses variable block sizes for trans-
form kernels from 4 × 4 to 32 × 32, the AJND model designed for
8 × 8 could not be effectively applied to such transform kernel. To
fix this problem authors in [2] have proposed a new variable summa-
tion effect that consider the summation detection probability in TB.
Based on the psychophysical experiment, authors in [2] propose a
model for the summation effect that can handle the variation of TB
sizes and is defined as S(N) = N−1. The application of S(N)
will cancel the effect of N in the AJND profile and AJND will be
independent of TB size and is then defined as follows:

AJND(n,w, ψ, bg,D,RS) =
T (D)× Tbasic(w,ψ)× αlum(w, bg)× CM(n)×∆S

(12)

where CM is the contrast masking effect which is calculated by
dividing the DCT blocks into three categories. The masking factor
can be derived based on inter- and intra-band masking. ∆S is the
saliency modulation factor which could enhance or reduce the visual
sensitivity in a given scene.

4.1. Saliency modulation factor

Visual saliency is one of the most important cognitive processes
of the HVS, that can be used to modulate the visual sensitivity.
The later one could be enhanced or reduced according to the visual
saliency of the scene. Accordingly the JND model should be ad-
justed based on the saliency values of the given block. In the salient
region the visual sensitivity is in it highest level, due to the high
visibility of the region by HVS. In this work, we opted for the well-
known Itti-Koch saliency model [22], where saliency is derived from
low-level visual features. The saliency modulation factor described
by the following equation ranges between 0.53 and 1.85.

∆S(RS) = 1.15 + 0.7× tanh
(

2×
(

1
3.RS+0.1

− 1
))

(13)

where RS is the saliency level. As depicted in Fig. 5.(right)
the saliency factor present a smooth transition between salient and
no salient region in order to reduce the blocking artifact between
neighbouring blocks.

0.5
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Saliency level (RS)

∆
S

0 0.2 0.4 0.6 0.8 1

Fig. 5: (left) Image from Balloons left view sequence and its pre-
dicted saliency map. (right) Saliency modulation factor

4.2. AJND transform coefficient suppression in MV-HEVC

In HEVC, the transform basis functions are an approximation of the
scaled DCT basis functions at the same size. HEVC explicitly in-
serts a right shift and clipping operation to ensure that intermediate
values can be stored not exceeding 16-bit. The HEVC quantization
process in the codec is defined as :

|Dn,i,j | = [|Cn,i,j | × uiQi,j +Of ]� iQBits (14)

where iQBits indicates the number of bits for the right shift and
is defined as iQBits = 14 + baseQp

6
+ iT ransformShift,

with iT ransformShift representing the bits to be shifted for
scale adjustment to approximate the DCT basis function and
iT ransformShift = 15 − 8 + log2(N). Of is the rounding
offset and uiQ refers to the quantization weighting multiplier for
the transform coefficients. |Cn,i,j | and |Dn,i,j | denote the (i, j)
output residual transform coefficient and the quantized one, respec-
tively. Before, the suppression process, the AJND thresholds values
have to be scaled as the transform coefficient. The scaled AJND is
expressed as :

AJNDs
n,i,j = AJNDn,i,j � iT ransformShift (15)

The coefficient suppression is implemented in the MV-HEVC quan-
tization process. Here the quantization coefficient is equal to 0 for
|Cn,i,j | ≤ AJNDs

n,i,j and otherwise is calculated as :(
|Cn,i,j | −AJNDs

n,i,j

)
× uiQi,j +Of � iQBits (16)

4.3. Performance evaluation

Comprehensive experiments were conducted in order to evaluate
the performance of the proposed approach compared to the anchor
MV-HEVC. Three well-known video sequences with two different
resolutions (1024 × 768 and 1920 × 1088) have been used in this
experiment. Each sequence has been encoded using four quanti-
zation parameters 25, 30, 35 and 40. The coding performance are
evaluated using the average bitrate saving over the four QP for each
sequence (∆-BR) and the SSIM based metric which have been used
in [23] to evaluate the stereoscopic image quality and is given by.

SSIMdisp1 = sqrt
(

SSIM(Ilo,Ild)+SSIM(Iro,Ird)
2

× SSIM(do, dd)
)

(17)

(IloIro) represents the original stereo-pair, (IldIrd) the distorted
stereo-pair, (do, dd)) respectively original and distorted disparity
maps. Table 3 illustrates the results obtained with the proposed
AJND model in terms of bitrate-saving and MSSIMdisp1 average.
The proposed model provides significant bitrate savings depending
on the used content and achieving up to 14.62% for the Kendo
sequence. These saving comes with a negligible visual quality
distortion that for all sequences (< 2%).

Table 3: Coding performance of the proposed model.

Sequences ∆BR ∆SSIMdisp1

Balloons 7.712% 1.188%
Kendo 14.62% 1.914%
UndoDancer 11.581% 1.298%

5. CONCLUSION

In this paper, we proposed a novel asymmetric JND (AJND) for
stereoscopic images in the DCT domain. Based on psychophysical
experiments, this model estimates the threshold of asymmetric noise
in the DCT domain. The AJND incorporates the basic CSF and the
luminance adaption effect and is modulated by a disparity adjust-
ment factor. The subjective scores demonstrated that the proposed
AJND can tolerate more noise at acceptable perceived quality. Ob-
jective and subjective results showed that the proposed method can
provide significant bitrate saving without perceptible visual quality
distortion. As a future work, the inclusion of effective contrast mask-
ing could be beneficial for the performance of the proposed model.
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