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ABSTRACT

The design of an optimum quantizer can be formulated as

an optimization problem that finds the quantization indices

that minimize the quantization error. One solution of the

optimization problem is DP quantization, an approach based

on dynamic programming. It is known that a quantized sig-

nal does not always contain signal values that can be repre-

sented with a given bit-depth. This property is called ampli-

tude sparseness. Because quantization is the amplitude dis-

cretization of signal value, amplitude sparseness is closely

related to the design of the quantizer. Since signal values

with zero frequency do not affect quantization error, there is

the potential to reduce complexity when designing the opti-

mum quantizer by skipping the processing of signal values

that have zero frequency. However, conventional methods on

DP quantization do not design for amplitude sparseness and

so are unduly complex. In this paper, we propose an algo-

rithm that yields an optimum quantizer that minimizes quan-

tization error with reduced complexity given the existence of

amplitude sparseness.

Index Terms— quantization, sparseness, dynamic pro-

gramming

1. INTRODUCTION

The purpose of quantization [1] is to generate quantization

indices based on a given metric. If the metric of quantization

involves distortion (quantization error) caused by the quanti-

zation process, the design of the optimal quantizer leads to

a kind of minimization problem, that is, we should gener-

ate quantization indices that can minimize the quantization

error. A typical quantization error expression is the sum of

square error (SSE). Quantization schemes are classified into

two types: conversion from a continuous signal into a discrete

one, and conversion from finely discrete signal to coarser dis-

crete one. This manuscript focuses on the latter type. The

latter type is common in bit depth conversion, and is required

for display adaptation [2] [3], bit-depth scalable coding [4]

[5] and HDR video coding [?].

There are two approaches to solve the above-mentioned

minimization problem: analytical optimization, which calcu-

lates optimal solutions analytically, and numerical optimiza-

tion, which computes optimal solutions based on numerical

computation. If the probability density function (PDF) of

quantized data can be represented in some particular paramet-

ric forms, for example, uniform distribution, Gaussian distri-

bution or Laplace distribution, you can adopt analytical op-

timization which analytically optimizes the quantization in-

dices for symbols generated from these PDFs. However, such

analytical optimization approaches are seldom used because

the PDF of quantized data generally can not be represented in

such parametric forms.

Thus numerical optimization approaches are more com-

mon as they do not require any particular parametric form of

the PDF. Representative one is Lloyd-Max quantization algo-

rithm (LM quantization) [6] [7]. However, LM quantization

can not guarantee optimal solutions. In order to design an

optimal quantizer, adaptive quantization algorithms based on

dynamic programming (DP quantization) are studied [8]. As

low complexity algorithms for designing DP quantizers, [9]

address the minimization of the quantization error subject to

a convexity constraint, while [10] uses matrix search to find

optimal solutions for DP quantization.

When we design an optimal quantizer for an image sig-

nal, it is important to note most image signals exhibit am-

plitude sparseness of signal values, that is, some pixel val-

ues are never used or used very infrequently. An image with

amplitude sparseness does not contain all signal values that

can be represented by the given bit-depth. For example, if an

image whose bit-depth is 10 bits has amplitude sparseness,

its image contains fewer than 1024 different signal values,

even though the image can represent up to 1024 signal val-

ues. Some studies[11] [12] [13] on image coding report that

they can improve coding efficiency by considering amplitude

sparseness. Thereafter, unless otherwise specified, amplitude

sparseness is referred to as sparseness.

A histogram of an image with amplitude sparseness con-

tains so insignificant elements whose frequency is zero. Sig-

nal values corresponding to insignificant elements do not af-
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Fig. 1. Example of parameters for quantization

fect quantization error. Therefore, by designing the quantiza-

tion process to properly account for insignificant elements we

can reduce the complexity while minimizing quantization er-

ror. However, conventional DP quantization methods do not

consider sparseness and so their efficiency has room for im-

provement. In this paper, we propose an algorithm that re-

duces the complexity of DP quantization for image signals

with sparseness, while well minimizing quantization error.

2. FORMULATION OF QUANTIZER DESIGN

We formulate the design of a quantizer that translates a dis-

crete signal withK-level to one withM -level (M < K). For

this formulation, we use the histogram of the signal as the in-

put of the quantizer. The k-th element of the histogram is h[k]
(k = 0, · · · ,K − 1), which is the frequency of signal value
k. The formulated quantizer is defined with two kinds of pa-

rameters∆m and Lm;∆m is the width of them-th interval of

the histogram. Lm is the upper boundary of them-th interval.

These parameters are described as:











Lm =
m
∑

j=0

∆j − 1 (m = 0, · · · ,M − 2)

LM−1 = K − 1

(1)

Henceforth, the m-th interval [Lm − (∆m − 1), Lm] of the

histogram is called the m-th bin. Since each bin has at least

one element, Lm (0 ≤ m ≤ M − 2) is restricted to the

following range:

m ≤ Lm ≤ K − (M −m) (2)

Fig.1 illustrates the above-mentioned parameters for a his-

togram with eight elements (K = 8) quantized into one with
four bins (M = 4). This figure shows that the bins contain
2(= ∆0) elements, 3(= ∆1) elements, 1(= ∆2) element,
and 2(= ∆3) elements of the input histogram; and the upper
boundaries of the bins become L0 = ∆0 − 1 = 1, L1 =
L0 +∆1 = 4, L2 = L1 +∆2 = 5, and L3 = L2 +∆3 = 7.

The quantizer is designed around minimizing the quanti-

zation error created by approximating all elements in them-th

bin [Lm−(∆m−1), Lm] in the histogram with representative

value ĉ(Lm − (∆m − 1), Lm). As the quantization error of
them-th bin [Lm− (∆m−1), Lm], we use the sum of square

error e(Lm − (∆m − 1), Lm) defined as:

e(Lm − (∆m − 1), Lm)

=

Lm
∑

k=Lm−∆m+1

{k − ĉ(Lm − (∆m − 1), Lm)}2h[k] (3)

where ĉ(Lm − (∆m − 1), Lm) is the integer value that is the
closest to the centroid of them-th bin. The centroid is defined

as:

c(Lm − (∆m − 1), Lm) =

∑Lm

k=Lm−(∆m−1) kh[k]
∑Lm

k=Lm−(∆m−1) h[k]
(4)

Optimization of the quantizer means finding the parameters

that minimize the following summation of quantization error

(∆∗

0, · · · ,∆
∗

M−1)

= arg min
∆0,··· ,∆M−1

{

M−1
∑

m=0

e(Lm − (∆m − 1), Lm)} (5)

3. SPARSE DP QUANTIZATION

3.1. Key point for complexity reduction

We introduce a complexity reduction algorithm for DP quan-

tization that focuses on insignificant elements. When the fre-

quency of signal value Lm+1 is zero, that is, h[Lm+1] = 0,
the quantization error of interval [Lm− (∆m−1), Lm+1] in
a histogram is equal to that of interval [Lm− (∆m−1), Lm].

This is because the addition of h[Lm + 1](= 0) to the quan-
tized interval has no effect on quantization error. Thus, when

minimizing quantization error it is enough to consider only

significant elements, i.e. elements whose frequencies are not

zero.

In order to verify the above hypothesis on the sparseness

of image signals, we measured the sparseness of standard im-

ages specified in section 4. Sparseness is defined as the ratio

of the number of insignificant elements to the number of all

elements, as follows:

Sparseness =
the number of insignificant elements

the number of all elements
(6)

As shown in Table 1, we confirmed that all these images ex-

hibit some degree of sparseness.

In order to describe the proposed quantization algorithm,

we define some symbols and look-up tables below. Index k,

which identifies elements of histogram h[k] (k = 0, · · · ,K−
1) and index k̃ (k̃ = 0, · · · , K̃ − 1), which identifies the

significant elements of histogram h[k] are called element in-

dex and significant element index, respectively. Table Z[k]
(k = 0, · · · ,K − 1) contains the number of insignificant ele-
ments belonging to interval [0, k] of the histogram. TableF [k̃]
contains the element index corresponding to the k̃-th insignif-

icant element. TableΨu[m] (m = 0, · · · ,M−1) contains the
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Table 1. Sparseness of standard images (cells in the “Sparse-

ness” column represent values output by equation (6) )

Quantized signal Sparseness [%]

Image1 7.5

Image2 8.2

Image3 11.2

Image4 19.6

maximum value of the significant index that can be the upper

bound of the m-th bin. Table Ψl[m] (m = 0, · · · ,M − 1)
contains the minimum value of the significant index that can

be the upper bound of them-th bin. Ψu[m] and Ψl[m] (m =
0, · · · ,M − 1) are generated as follows:

Ψu[m] = ψu[m−M +K]− Z[ψu[m−M +K]] (7)

Ψl[m] =

{

ψl[m]− Z[ψl[m]] (m = 0, · · · ,M − 2)

K − 1− Z[K − 1] (m =M − 1)
(8)

where, ψu[m −M + K] is the maximum element index for

significant elements in a range not greater thanm−M +K.

ψl[m] is the minimum element index for significant ele-

ments in a range not lower thanm.

3.2. Optimal quantizer design that considers histogram

sparseness

We describe the proposed algorithm of sparse DP quanti-

zation; it retains optimality (minimized quantization error)

while reducing the complexity by skipping the processing of

insignificant elements.

Assume we divide histogram interval [0, F [L̃m]] intom+
1 bins. F [L̃m] indicates the L̃m-th significant element. The

sub-interval [F [L̃i−(∆̃i−1)], F [L̃i]] (i = 0, · · · ,m) of inter-

val [0, F [L̃m]] is the i-th bin. L̃i is the significant element in-

dex of the upper bound of the i-th bin, and ∆̃i is the number of

significant elements in the i-th bin. We compute quantization

error e(F [L̃i−(∆̃i−1)], F [L̃i]) created by approximating all
elements in the i-th bin with a centroid value, and then store

the quantization error in look up table E[L̃i − (∆̃i − 1), L̃i].
We use S̃m[L̃m] as the look up table that stores the minimum
summation of quantization error

∑m

i=0E[L̃i − (∆̃i − 1), L̃i].

The minimum value of
∑m

i=0E[L̃i−(∆̃i−1), L̃i] is achieved

with the optimal set of ∆̃m, · · · , ∆̃0. Note that S̃m[L̃m] is
equal to Sm[F [L̃m]].

SinceE[L̃m−(∆̃m−1), L̃m] depends on significant index
L̃m of the upper bound of the m-th bin and the number of

significant elements ∆̃m in the m-th bin, the value stored in

S̃m[L̃m] is computed from S̃m−1[L̃m − ∆̃m] as follows:

S̃m[L̃m] = min
∆̃m

[

S̃m−1[L̃m − ∆̃m] + E[L̃m − (∆̃m − 1), L̃m]
]

(9)

wherem = 1, · · · ,M−1. Using a recursive equation (9), the
computation of S̃m[L̃m] is equivalent to selecting the optimal
parameters among ∆̃m = 1, · · · , L̃m − Ψl[m − 1]. Consid-
ering that the upper bound and the lower bound of significant

indices in the m-th bin are defined as Ψu[m] and Ψl[m], re-
spectively, we have L̃m = Ψl[m], · · · ,Ψu[m]. The value

stored in S̃m[L̃m] is used in computing S̃m+1[L̃m+1].

Letting ∆̃
(L̃m)
m denote ∆̃m that minimizes the right side of

equation (9), we store the optimal upper bound of them−1-th
bin for each upper bound L̃m (= Ψl[m], · · · ,Ψu[m]) of the
m-th bin in table defined by Tm−1[L̃m] as follows:

Tm−1[L̃m] = L̃m − ∆̃(L̃m)
m

In the case ofm = 0, S̃0[L̃0] represents the quantization error
caused by approximating histogram interval [0, F [L̃0]] with
the centroid of the interval; this yields:

S̃0[L̃0] = E[0, F [L̃0]]

The optimum parameters (∆∗

0, · · · ,∆
∗

M−1) are obtained
through the following process. The minimization problem of

equation (5) becomes:

min
∆̃M−1

[

S̃M−2[L̃M−1 − ∆̃M−1] + E[L̃M−1 − (∆̃M−1 − 1), L̃M−1]
]

We express ∆̃∗

M−1 that minimizes the above equation as fol-

lows:

∆̃∗

M−1 = arg min
∆̃M−1

[

S̃M−2[L̃M−1 − ∆̃M−1]

+ E[L̃M−1 − (∆̃M−1 − 1), L̃M−1]
]

Since the only possible value of L̃M−1 isK−Z[K−1]−1, we
have L̃M−1 = K−Z[K−1]−1. Using L̃M−1 and ∆̃

∗

M−1, the

optimal significant element index of the upper bound of the

M − 2-th bin can be obtained as L̃∗

M−2 = L̃M−1− ∆̃∗

M−1 =

K−Z[K−1]−1−∆̃∗

M−1. Since the optimal significant ele-

ment index of the upper bound of theM − 3-th bin for L̃∗

M−2

is stored in TM−3[L̃
∗

M−2], let L̃
∗

M−3 = TM−3[L̃
∗

M−2]. Re-

ferring tables similarly, we obtain L̃∗

M−4 = TM−4[L̃
∗

M−3]

,· · · , L̃∗

0 = T0[L̃
∗

1] as the significant element indices of the
upper bound of each bin. By accessing F [] with these ob-

tained significant element indices L̃M−1, L̃
∗

M−2,· · · , L̃
∗

0, we

have the element indices of the upper bound of each bin.

As a result, the intervals of each bin are derived as follows:

∆∗

M−1 = F [L̃M−1] − F [L̃∗

M−2] = K − 1 − F [L̃∗

M−2],

∆∗

M−2 = F [L̃∗

M−2]− F [L̃∗

M−3] ,· · · ,∆
∗

1 = F [L̃∗

1]− F [L̃∗

0],

∆∗

0 = F [L̃∗

0] + 1.

4. EXPERIMENTS

We performed the following experiments to investigate the ef-

fectiveness of our quantization algorithm from the viewpoint

of complexity.
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(a) Image1 (b) Image2

(b) Image3 (d) Image4

Fig. 2. Thumbnail images of input signals that were quantized

As the input signal, we used the sequences in ITE/ARIB

Hi-Vision Test Sequence 2nd Edition. The sequences have

progressive scan format with resolution of 1920 × 1080 pix-

els/frame. Luminance signal (10 bit scale) of the first frame

of each sequence was used in the following evaluation exper-

iments. The bit-depth of input signal means K = 1024. In
these experiments, we set M = 128, 256 as the number of

bins. These experiments were performed on a computer with

CPU:Intel core i5 (2.6GHz) and memory:8GB.

We compared sparse DP quantization (abbreviated to

SDP-Q in the following tables and figures) with DP quanti-

zation (abbreviated to DP-Q hereafter) in order to evaluate

complexity reduction achieved by sparse DP quantization.

DP quantization (abbreviated to DP-Q in the following tables

and figures) The results are shown in Fig. 2, where processing

time is the average processing time of 1000 trials. We used

the following metric to evaluate the complexity reduction

attained by sparse DP quantization:

complexity reduction ratio =

processing time of DP-Q− processing time of SDP-Q

processing time of DP-Q
(10)

In order to elucidate the overall algorithm attributes for all se-

quences, Table 2 shows average processing time of DP-Q and

SDP-Q for all sequences at allM values. From this table, we

can confirm that sparse DP quantization can reduce complex-

ity by 21.2 to 24.2% on average over DP quantization.

The results show that the complexity reduction ratio in-

creases as M decreases. The reason for this is as follows.

When the number of insignificant elements M is a constant,

the ratio of the number of insignificant elements to the number

of bins increases as the number of bins decreases. Sparse DP

quantization achieves complexity reduction by skipping the

processing of insignificant elements. Thus, it is understand-

able that complexity reduction ratio ( sparse DP quantization

to DP quantization) becomes large, asM decreases.

Let us consider the complexity reduction of sparse DP

quantization from the viewpoint of sparseness. As shown

in Table 1 in 3.1, image sparseness increases in the order of

Table 2. Processing time of DP-Q and SDP-Q ( cells in the

“Reduction ratio” column represent values defined in equa-

tion (10) )

(a)M=128

M DP-Q SDP-Q reduction ratio

[msec] [msec] [%]

image1 226 193 16.2

image2 228 189 17.1

image3 225 176 21.8

image4 223 130 41.7

average 226.0 171.5 24.2

(b)M=256

M DP-Q SDP-Q reduction ratio

[msec] [msec] [%]

image1 239 201 15.9

image2 239 199 16.7

image3 238 191 19.7

image4 235 159 32.3

average 237.8 187.5 21.2

“image1”, “image2”, “image3”, and “image4”. According to

Table 2, we can confirm that the complexity reduction ratio

improves as sparseness increases.

5. CONCLUSIONS

This paper tackled complexity reduction for dynamic pro-

gramming (DP) quantization by focusing on the sparseness of

signal values. The proposed method, called sparse DP quan-

tization, keeps the optimality of DP quantization in terms of

minimizing the quantization error. Specifically, sparse DP

quantization can reduce the complexity of DP quantization

without increasing quantization error. Experiments on stan-

dard images showed that sparse DP quantization offers, on

average, 21.2 to 24.2% less complexity than DP quantization.

Sparse DP quantization can be used as a technology to

complement conventional methods [9] [10] since the conven-

tional methods take approaches that do not depend on the

sparseness of signal values. Therefore, by combining sparse

DP quantization and conventional methods, the complexity of

DP quantization can be further reduced.

6. REFERENCES

[1] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE

Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–2383, Oct.

1998.

[2] E. Reinhard, S. Pattanaik, G. Ward, and P. Debevec,

High Dynamic Range Imaging: Acquisition, Display,

1790



and Image-Based Lighting, Morgan Kaufmann Pub-

lisher, 2005.

[3] E. François, D. Rusanovskyy, P. Yin, P. Topiwala,

G. Sullivan, and M. Naccari, “Signalling, backward

compatibility and display adaptation for HDR/WCG

video coding, draft 1,” JCTVC-Y1012, Oct. 2016.

[4] J. Boyce, Y. Ye, J. Chen, and A. Ramasubramonian,

“Overview of SHVC: Scalable extensions of the high

efficiency video coding standard,” IEEE Trans. Circuits

Syst. Video, vol. 26, no. 1, pp. 20–34, 2015.

[5] ISO/IEC 18477-2:2016: Information technology: Scal-

able compression and coding of continuous-tone still

images – Part 2: Coding of high dynamic range images,

2016.

[6] S. P. Lloyd, “Least squares quantization in PCM,” IEEE

Trans. Inf. Theory, vol. IT-28, pp. 129–136, Mar. 1982.

[7] J. Max, “Quantizing for minimum distortion,” IRE.

Trans. Inf. Theory, vol. IT-7, pp. 7–12, Mar. 1960.

[8] J. D. Bruce, Optimum quantizer, Ph.D. thesis, M.I.T.,

May 1964.

[9] D. Sharma, “Design of absolutely optimal quantizers

for a wide class of distortion measures,” IEEE Trans.

Inf. Theory, vol. 24, no. 6, pp. 693–702, Nov. 1978.

[10] X. Wu, “Optimal quantization by matrix searching,”

Journal of Algorithms, vol. 12, no. 4, pp. 663–673, Dec.

1991.

[11] P. Ferreira and A. J. Pinho, “Why does histgram pack-

ing improve lossless compression rates ?,” IEEE Signal

processing letters, vol. 9, no. 8, pp. 259–261, 2002.

[12] M. Aguzzi and M. Albanesi, “A novel approach

to sparse histogram image lossless compression using

JPEG 2000,” Electronic Letters on Computer Vision and

Image Analysis, vol. 5, no. 4, pp. 24–46, 2006.

[13] E. Nasr-Esfahani, S. Samavi, N. Karimi, and S. Shiran,

“Near lossless image compression by local packing of

histogram,” Proc. IEEE Int. Conf. Acoustics, Speech and

Signal Processing, pp. 1197–1200, 2008.

1791


