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ABSTRACT 

 

Test Zone Search (TZS) is considered the current state-of-

the-art fast Motion Estimation algorithm because it presents 

the best tradeoff between compression efficiency and 

complexity in comparison to the Full Search strategy. 

However, it is still one of the most computationally-

demanding tools of current video coding standards, such as 

the High Efficiency Video Coding (HEVC). This paper 

presents an analysis on the search area opportunities and 

best match distributions in TZS, which led to the proposal of 

a novel search pattern in its most complex step, the Raster 

Search (RS). The new pattern, named Octagonal-Axis Raster 

Pattern (OARP), allowed an average complexity reduction 

of 61% in TZS, with a negligible BD-rate increase of 

0.0371% in comparison to the original algorithm. 
 

Index Terms—HEVC, Motion Estimation, Test Zone 

Search, TZS, TZSearch, Complexity Reduction. 
 

 

1. INTRODUCTION 

 

High Efficiency Video Coding (HEVC) [1] is the most 

recent video coding standard developed by the Joint 

Collaborative Team on Video Coding (JCT-VC). HEVC 

achieves twice the compression of its predecessor, the 

H.264/AVC standard [2], for the same image quality. 

However, to reach such compression efficiency, the 

encoding process can take up to 500% longer than 

H.264/AVC [3]. This complexity increase of HEVC is 

mostly due to the larger number of partitions evaluated in 

the Motion Estimation (ME) process, which is one of the 

most complex stages in modern video encoders.  

The increasing users’ demand for high-resolution video 

sequences led the HEVC standard to allow a flexible frame 

partitioning structure, which allows both very large (64×64) 

and very small (4×4) block sizes during the encoding 

process. Each frame is first divided into a sequence of equal-

sized Coding Tree Units (CTUs), which are typically 64×64 

blocks. A CTU can be recursively split into smaller blocks, 

called Coding Units (CUs) in a quadtree structure. These 

CUs are then further divided into Prediction Units (PUs) and 

Transform Units (TUs) for prediction and transform 

purposes, respectively. With this flexible partitioning, ME is 

evaluated several times with every partitioning combination, 

consuming about 60-70% of the whole encoding time [4-5]. 

To simplify the partitioning decision, several authors [6-9] 

propose different heuristics to prune the quadtree structure, 

aiming at reducing the complexity of HEVC without 

decreasing compression efficiency. Even with this pruning, 

the complexity of ME is still high due to the large number of 

candidates blocks in reference frames. 

The Full Search (FS) algorithm provides pseudo-

optimal coding efficiency but incurs in a substantial 

computational burden because it checks all possibilities 

within the search area (SA). To speed up ME, the Test Zone 

Search (TZS) algorithm is used for fast search in most 

HEVC encoder implementations [10]. TZS employs a four-

step strategy based on heuristics that try to predict the best 

matching, exploiting spatial and temporal correlation in the 

neighboring areas. However, as this process is still executed 

for all possible PU sizes in every quadtree possibility [1], 

ME is still very complex even when TZS is deployed.  

Several authors try to reduce the block matching 

complexity in ME algorithms through the use of low 

complexity distortion measures, such as the Partial Sum of 

Absolute Differences (PSAD) [11], or through the use of 

early-termination schemes [12-13]. However, these 

strategies usually result in significant compression efficiency 

losses and turn out to be of difficult implementation in 

hardware due to lack of regularity.  

This paper presents a complexity reduction strategy for 

TZS based on a novel raster search pattern, called 

Octagonal-Axis Raster Pattern (OARP). By exploiting the 

existence of regions within the SA with highest matching 

probabilities, OARP is able to reduce the TZS complexity 

by 60.91%, which results in an overall encoding complexity 

reduction of 21.57% and a negligible Bjontegaard Delta 

(BD)-rate increase of only 0.0371%. The rest of this paper is 

organized as follows. Section 2 briefly describes TZS and its 

complexity. Section 3 presents the statistical analysis of 

Raster Search in TZS, which led to the proposal of OARP in 

section 4. Section 5 presents the obtained results and section 

6 concludes this paper. 
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2. TZS OVERVIEW AND COMPLEXITY ANALYSIS 

 

The TZS algorithm consists of four steps: Motion Vector 

Prediction, First Search, Raster Search, and Refinement, as 

shown in the flowchart of Fig. 1. Initially, the Motion Vector 

Prediction, simply referred as Prediction, chooses the best 

motion vector (MV) out of the median, co-located, left, top 

and top-right predictors from temporal and spatial 

neighboring PUs [10]. The predictor that leads to the 

minimum rate-distortion (RD) cost is chosen as the initial 

search point for the next step, the First Search. 

During First Search, a diamond or square search pattern 

is traversed, with a stride length varying from 1 to the 

maximum search range (SRmax) in powers of 2. Among all 

the points tested in the pattern, the best search point is the 

one that returns the minimum RD cost. First Search step is 

interrupted if no block with a smaller RD cost is found after 

the execution of three expansions levels. 

The third step is the Raster Search, in which a simple 

Full Search is performed on a sub-sampled version of the 

SA. The sub-sampling step is defined by iRaster, a constant 

defined as 5 by default, and it is applied both horizontally 

and vertically, resulting in a total of 676 candidates blocks in 

the case of a SA configured as [-64,+64]. Raster Search is 

only performed if the distance of the SA center to the best 

block matching found in the second step (First Search) is 

greater than iRaster. Otherwise, it is skipped.  

The final step of TZS is the Refinement, which tries to 

find a better block matching starting a new search around the 

best position obtained so far. The search pattern used in this 

step is the same used in First Search, but it updates the 

center of the SA to the best result obtained in the last 

iteration. The Refinement step is interrupted if no MV with 

smaller RD cost is found after two expansion levels. 

The complexity analysis of TZS presented in [12] 

showed that due to its sub-sampling search method within 

the whole SA, Raster Search is by far the most complex step, 

reaching 81% of the total TZS execution time on average. 

The complexity analysis was deepened in this work for 

different PU sizes, as Fig. 2 shows. In this analysis, the 

HEVC reference software (HM 16.14) was used under the 

specifications of the Common Test Conditions (CTC) [14]. 

Altogether, five high-resolution video sequences were 

analyzed: NebutaFestival, Traffic, BQTerrace, Cactus, 

ParkScene). All frames were encoded with Quantization 

Parameters (QPs) 22, 27, 32, and 37, using the Random 

Access (RA) configuration and the Main Profile [14]. 

The results in Fig. 2 show that for all PU sizes Raster 

Search is by far the most complex step of TZS. In the largest 

PUs (64×64), Raster Search demands 90% of the overall 

TZS time. This share decreases in smaller blocks, but even 

in 8×4 and 4×8 PUs Raster Search corresponds to more than 

55% of TZS time. Additionally, the analysis in [12] also 

revealed that despite its high complexity Raster Search is 

responsible for finding only 0.4% of the best block 

matchings in TZS. However, simply eliminating this step 

from the algorithm would result in prohibitive compression 

efficiency loss [12]. This way, an analysis of the behavior of 

Raster Search was performed, aiming at identifying the 

distribution of the best block matchings returned from this 

step. 

  

3. BLOCK MATCHING DISTRIBUTION IN RASTER 

 

After analyzing the TZS time distribution for all PU sizes, 

an analysis of the best block matching occurrence in the SA 

of Raster Search was performed. Besides the CTC video 

sequences listed in the previous section, the first 100 frames 

of four Ultra High Definition (UHD) videos from the Ultra 

Video Group [15] were analyzed (Beauty, HoneyBee, 

Jockey, YachtRide).  

During the execution of Raster Search, all search points 

are within the SA, also referred as search window, which has 

a fixed maximum size defined by the Search Range (SRmax) 

parameter. The default value of SRmax in HM was used in the 

experiments, setting the SA to [-256, +256], thus composed 

of 512×512 positions. Therefore, considering the iRaster 

sub-sampling step, a total of approximately 10,500 positions 

were tested during each execution of Raster Search. For the 

distribution analysis presented in this section, the point 

where the best block matching was found was stored after 

each execution of Raster Search.  

The results were plotted in the heat maps presented in 

Fig. 3, where the warmest colors represent SA positions with 

larger occurrence of best block matching and the coolest 

colors represent positions rarely or never chosen. 

Fig. 3(a)-(c) present the heat map for three videos sequences 

(BQTerrace, YachtRide, and Cactus, respectively), whereas 

Fig. 3(d) is the average obtained for all video sequences 
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Fig. 1. Flowchart of TZS algorithm 
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Fig. 2. Distribution of TZS processing time across its four steps 

for different PU sizes. 
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analyzed. BQTerrace (Fig. 3(a)) and YachtRide (Fig. 3(b)) 

are corner cases that represent the two most uncommon 

distributions among all videos analyzed. In Fig. 3(a), a 

significant concentration of matchings in the central vertical 

axis of the SA is perceived. This happens due to temporal 

characteristics of the BQTerrace sequence, in which there is 

a constant camera movement in the upright direction. In 

Fig. 3(b), the distribution is much more uniform, but the 

activity above the central horizontal axis is more accentuated 

than below. This is also due to the YachtRide video 

characteristics, which is mainly composed of a boat floating 

from left to right, with some upright oscillations. The 

distribution for Cactus, shown in Fig. 3(c), represents a 

pattern recurrent in most remaining sequences, with a clear 

concentration around the central point.  

The average distribution for the whole set of videos is 

shown in Fig. 3(d). Notice that besides the high 

concentration within the inner 256×256 square (in red), a 

distribution around the central axes is significant, even in 

areas far from the central point. Still, it is important to notice 

that even the atypical cases presented in Fig. 3(a)-(b) are 

covered in the average pattern observed in Fig. 3(d). 

 

4. OCTAGONAL-AXIS RASTER PATTERN 

 

The analysis presented in the previous section shows that the 

computational effort to perform the search in most of the 

points during Raster Search is wasted since the majority of 

compared positions outside the 256×256 square and the axes 

rarely lead to the best matching. Therefore, it is perceptible 

that these search points could be removed, with small 

penalties in coding efficiency. 

To exploit the observed characteristics of MV 

distribution in the search area efficiently, the Octagonal-

Axis Raster Pattern (OARP) is proposed to reduce the 

complexity of Raster Search in TZS. Fig. 3(e) presents the 

proposed search pattern. The original idea was to perform 

the search within the square that represents 25% of all the 

SA, indicated by the analysis presented in section 3. 

However, it is noticeable in Fig. 3(d) that the four corners of 

the inner search square rarely lead to best block matchings, 

while the horizontal and vertical axes are well represented in 

the heat maps, but not totally covered by the inner square. 

This way, with the aim of better-exploiting areas with the 

highest occurrence of best block matching, the search points 

that compose the four corners were replaced by the exact 

same amount of points in the axes regions, resulting in the 

octagonal-plus-axes search area shown in Fig. 3(e). 

The idea is generalized in Fig. 3(e) for an original N×N 

SA. The OARP strategy reduces it to a (N/2)×(N/2) SA, 

which is distributed between the octagon inscribed in the 

(N/2)×(N/2) square and the horizontal and vertical axes. 

Altogether, OARP searches 25% of the original SA, of 

which 88% are within the octagonal area and 12% refer to 

the axes. In the specific case of the default SA in HM 

(512×512), a total of 2,601 positions are tested, from which 

2,289 are within the octagon and 312 belong to the axes. 

After the definition of OARP, a brief analysis was 

performed to evaluate how well it covers the best block 

matchings found by the original Raster Search in TZS. The 

analysis shows that even performing the search in 25% of 

the original SA, OARP is able to cover 62.3% of the total 

best block matchings found by the original Raster Search, 

considering all sequences analyzed in the previous section. 

As next section shows, the smaller number of tests 

performed in OARP allows reducing significantly the TZS 

complexity, while its large coverage of best matching points 

still maintains encoding efficiency. 

Differently from other fast ME strategies, OARP does 

not need neighboring cost information for directing the 

search and is suitable for the Raster Search step of TZS. 

Besides, its fixed number of search points allows for 

execution regularity, which is especially important for 

hardware implementations of ME algorithms. 

 

5. EXPERIMENTAL RESULTS 

 

To evaluate the efficiency of the novel Raster Search pattern 

proposed for TZS, OARP was implemented in the HEVC 

reference software (HM-16.14). All simulations have been 

carried on a workstation with an Ubuntu 14.04.5 OS, 

running on an Intel Xeon E5-2640v3@2.60GHz processor 

and with 32 GB of RAM. 

 
Fig. 3. Block matching distribution within the [-256, +256] search area for (a) BQTerrace, (b) YachtRide, and (c) Cactus sequences; 

(d) average block matching distribution for the whole set of video sequences tested; (e) proposed Octagonal-Axis Raster Pattern (OARP). 
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The performance of OARP was evaluated for eight 

high-definition video sequences from classes A1, A2, A and 

B of the latest versions of the CTC documents [14],[16]. 

Classes A1 and A2 correspond to UHD sequences, whereas 

classes A and B correspond to WQXGA and 1080p 

sequences, respectively. The SRmax parameter was set to 256, 

and the maximum CU size and depth were set to 64×64 and 

4, respectively. All sequences were encoded with 

Quantization Parameter (QP) set to 22, 27, 32, and 37 and 

the Random Access (RA) configuration, also following the 

specifications recommended by the CTC.  

The HM encoder with OARP replacing Raster Search in 

TZS was compared to the original HM in terms of total 

encoding time reduction and TZS-only time reduction. 

Encoding efficiency was evaluated in terms of Bjøntegaard 

Delta (BD)-rate [17]. Table 1 presents the obtained results 

for OARP in terms of time reduction (TR) and encoding 

efficiency for all test sequences. Notice that the set of videos 

used in this evaluation are complimentary to those used in 

the complexity and block matching distribution analyses 

presented in sections 2 and 3.  

Table 1 shows that by using OARP instead of the usual 

Raster pattern, the processing time of TZS is reduced by 

60.91%. When considering the whole encoding process, an 

encoding time reduction of 21.57% is achieved in HM, with 

a BD-rate increase of only 0.0371%, which is negligible 

when taking into consideration the large reductions in 

processing time. It is important to emphasize that these 

sequences differ from one another in frame rate, bit depth, 

spatial resolution and motion/texture content. Thus, some 

videos benefit better from OARP because they incur in the 

execution of the Raster Search step more often. In fact, some 

cases even achieve negative BD-rate values, which means 

that OARP can perform better than the original TZS. This 

happens because by narrowing the SA closer to the central 

SA point, the Refinement step is sometimes executed around 

a position that would never be chosen in the original Raster 

Search process. 

Table 2 compares OARP with the two best-related 

works found in the literature for complexity reduction in the 

TZS algorithm. To allow for a fair comparison, the set of 

video sequences tested for the comparison in Table 2 is 

exactly the same as that listed in the two related works. In 

[18], TZS is accelerated by decreasing the number of search 

points according to a spiral scan manner instead of a raster 

scan, whereas in [12] an early-termination strategy based on 

machine learning is applied after each step that composes 

the TZS algorithm. However, these reductions are either 

small compared to the expressive complexity of TZS 

algorithm [18] or harm the compression efficiency to non-

negligible levels [12]. This work, on the other hand, excels 

when both dimensions are considered. Table 2 shows that 

OARP achieves a large average complexity reduction, close 

to that achieved in [12], with a much better compression 

efficiency, close to the achieved in [18]. Besides, as the 

strategy proposed in this work is compatible with that in 

[12], both of them can be combined in order to speed up 

TZS even more if some encoding efficiency loss can be 

tolerated. 

 

6. CONCLUSIONS 

 

This paper presented a novel search pattern for the Raster 

Search step of the Test Zone Search (TZS) algorithm, named 

Octagonal-Axis Raster Pattern (OARP). The strategy was 

conceived after a deep analysis on the TZS complexity, the 

search area opportunities and the best block matching 

distribution in Raster Search, leading to a search area 75% 

smaller than in the original algorithm. The experimental 

results showed that OARP is able to reduce the TZS 

processing time by 61%, with a negligible BD-rate increase 

of 0.0371%. When implemented in the HEVC reference 

software, an average total encoding time reduction of 21.6% 

is achieved. The strategy is compatible with other fast 

Motion Estimation algorithms that employ Raster Search, 

and can also be jointly implemented with other complexity 

reduction strategies. 
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Table 1. Comparison between OARP and original Raster  

Class Sequence 
BD-rate 

(%) 

TZS TR 

(%) 

Total TR 

(%) 

Class A 
PeopleOnStreet -0.2519 60.65 18.99 

SteamLocomotive   0.0510 61.40 21.30 

Class  B 
BasketballDrive -0.0291 59.55 20.93 

Kimono -0.0721 53.19 13.58 

Class A1 
Campfireparty  0.0955 68.16 30.04 

ToddlerFountain -0.0305 56.96 16.08 

Class A2 
CatRobot 0.0255 61.71 22.88 

DaylightRoad 0.5084 65.66 28.78 

Average 0.0371 60.91 21.57 
 

Table 2. Comparison between OARP and related works 

Sequences 
BD-rate (%) TZS TR (%) 

[18] [12] OARP [18] [12] OARP 

BasketballDrive -0.10 - -0.03 24.4 - 59.5 

BQTerrace -0.02 - 0.06 15.0 - 32.9 

Cactus -0.31 - -0.04 21.6 - 55.7 

Kimono -0.05 0.42 -0.07 29.5 67.7 53.2 

ParkScene 0.13 0.35 -0.03 16.2 64.5 42.8 

PeopleOnStreet - 0.65 -0.25 - 52.5 60.6 

SteamLocomotive - 0.33 0.05 - 66.3 61.4 

Average* -0.09 0.49 0.037 18.5 62.5 60.91 
* Average results for all video sequences tested in the work 
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