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ABSTRACT

High Efficiency Video Coding (HEVC) based 3D video cod-
ing (3D-HEVC) is the latest new joint standardization effort
of ISO/IEC MPEG and ITU-T Video Coding Experts Group
(VCEG) for 3D video coding. This new standard provides a
significant coding improvement, especially for high resolu-
tion videos. However, one the most important challenges in
3D-HEVC is time complexity. In technical terms, 3D-HEVC
is a hybrid video coding approach using quad-tree based
block partitioning with more flexible Coding Unit (CU) size
selection, which increases the coding efficiency of 3D-HEVC
significantly, but also brings huge computational complexity
due to the Rate Distortion (RD) cost calculation of all possible
dimensions of CU to select the optimal one. To reduce this
computational complexity, this paper proposes an efficient
fast intra coding unit based on big data analysis. The experi-
mental results demonstrate that the novel approach provides a
significant trade-offs between computational complexity and
RD performance.

Index Terms— Coding unit decision, big data, 3D-
HEVC, JCT-3V, AM-PCM.

1. INTRODUCTION

With the explosive increasing of 3D video applications, a new
generation video coding standard, called 3D video extension
of High Efficiency Video Coding (3D-HEVC) is currently be-
ing developed by JCT-3V [1]-[3], jointly established by the
ISO/IEC MPEG and ITU-T VCEG [4]. 3D-HEVC support
a new 3D video representation, commonly known as Multi-
view texture Videos plus Depth maps (MVD) format [5]. The
motivation for MVD usage, is to reduce the bandwidth for a
3D video transmission in which, at the receiver side, only a
small number of captured texture videos as well as associated
depth maps are used for synthesizing virtual views suitable
for displaying the 3D content on an auto-stereoscopic 3D us-
ing Depth Image Based Rendering (DIBR) techniques [6].

In the 3D-HEVC, a new flexible coding unit partition
structure is used, namely Coding Tree Unit (CTU) [7], in

Fig. 1. Recursive splitting structure of Coding Unit and Pre-
diction Unit.

which each CTU can be recursively splited to form a quad-
tree structure with new unit types: Coding Unit (CU), Pre-
diction Unit (PU) [8]. Fig. 1 shows the recursive splitting
structure of CU and PU.

In 3D-HEVC intra-coding, the recursive partition process
is very time-consuming, in which the 3D-HEVC encoder
search recursively for the best PU size decision by evalu-
ating the Rate-Distortion (RD) performance [3] of all intra
size modes [9]. Therefore, this evaluation provides much
higher compression efficiency and better synthesis quality
[10], but results in a significant increase of the computational
complexity at the encoder.

Recently, there has been some researches focusing on fast
depth map coding in 3D-HEVC to accelerate the CU intra
size decision process [11]-[12]. A fast intra coding algorithm
is designed in [11] to speed up the quad-tree decision by the
good feature Corner Point. In [12], the authors propose a
strategies for fast CU size decision, in which the encoder ig-
nores the evaluation of the smaller CU size if some specific
conditions are satisfied.

Consequently, this paper proposes a fast texture intra cod-
ing size decision based on a robust Automatic Merging Possi-
bilistic Clustering (AM-PCM) for big data analysis developed
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by [13]. The main idea of the proposed algorithm is to use
AM-PCM on selective training data, next, we create a unified
model decision based on massive data, Finally this model is
used to accelerate the 3D-HEVC intra coding. The remain-
der of the paper is organized as follows. Section 2 gives
an overview of the clustering algorithm and the features se-
lections. In Section 3, we describe briefly the process used
for big data analysis followed by the proposal size decision
model. Section 4 presents the simulation results, while Sec-
tion 5 concludes the work of this paper.

2. AM-PCM ALGORITHM AND FEATURES
SELECTION

Clustering analysis is a method to find groups within data with
most similar objects in the same cluster. AM-PCM is a robust
clustering method proposed by [13] to improve the weakness
of the Possibilistic C-Means (PCM) clustering [14]. In the
rest, we briefly describe the AM-PCM and we present the hole
clustering process in Alg. 1. Please for more information,
refere to [13].

Let X={x1, x2, ..., xN} be a set of N data, U=[u1, u2, ...,
uC]T =[µij]C×N partition matrix, A={a1, a2, ..., aC} cluster
centers and C number of cluster. The suggested objective
function is defined as follow:

JAM-PCM(U,A) =

C∑
i=1

N∑
j=1

µij [d
2
ij−γ(1− k

k + 1
.µ

1/k
ij )], k > 1.

(1)
By differentiating Eq. 1 with respect to µij and ai and setting
it respectively to 0, we get:

µij = (
γ − d2ij
γ

)k, ai =

∑N
j=1 µijxj∑N
j=1 µij

. (2)

We set d2(xi, xj) the Euclidian distance between xi and
xj and let set

Ω = {d2(x1, x2), ..., d2(x1, xN ), ..., d2(xN−1, xN )},
∆=sort{Ω} = {D(0),D(1), ...,D(N ·(N−1)/2)},

q =
1

N− 1
[N ·

C∑
i=1

(

N∑
j=1

µij/

C∑
l=1

N∑
j=1

µij)
2 − 1], (3)

k =
log(1− (1/p))

log(1− (D((N ·(N−1)/2)·q)/p2γ))
, p > 1, (4)

D =
D((N ·(N−1)/2)·q)

p2
. (5)

To avoid bad initials, we plan to use all data points as
initial cluster centers. The correlation coefficient matrix r2

and the densest cluster centers R are as follow:

r2il =
uTi ul

‖ui‖‖ul‖
,Ri =

C∑
l=1

r2il. (6)

The merging step is carried out as follows, let G to be the
clusters no yet merged. Let

Em = {l : g = Argmax
i∈G

(Ri), r2gl > ρ, l ∈ G}. (7)

where, G = {1, 2, ...,C}\(E1 ∪ E2 ∪ ∪ Em−1), and m =
1, 2, ...,Cnew.

For the new partition of the dataset, the algorithm com-
pute the center of each cluster for 1 ≤ m ≤ Cnew:

µnew
mj =

∑
l∈Em

µlj

|Em|
, anewm =

∑
l∈Em

al
|Em|

. (8)

Algorithm 1: AM-PCM algorithm

1 Input : Dataset X={x1, x2, ..., xN}
2 Output: Cluster centers A
3 Initial D(0)=D((N ·(N−1)/2)/

√
N)/2, p = 3, ρ=0.9,

ε=0.001;
4 Set t=0, A(0) = X, C = N, γ=max{1≤i,l≤Nd2(xi, xl)}

and ∆=sort{Ω} = {D(0),D(1), ...,D(N ·(N−1)/2)};
5 while (True) do
6 Compute k by Eq. 4, U and A(t+1) by Eq. 2;
7 if ‖A(t+1) − A(t)‖< ε then
8 Break;
9 end

10 Set m=1 and G={1, 2, ...,C};
11 Compute r2 with U and R with r2 by Eq. 6;
12 while |D > 0| do
13 Compute Em with R by Eq. 7;
14 Set G = G \ Em and m=m+1;
15 end
16 Set Cnew = m;
17 Compute U = Unew and A = Anew with Eq. 8;
18 Compute q by Eq. 3 and D(t+1) by Eq. 5;
19 if D(t+1) < D(t) then
20 D(t+1) = D(t);
21 end
22 t=t+1;
23 end
24 return A(t);

The CU sizes modes are mostly related the screen video
homogeneity, in which, the homogenous CUs are likely to be
encoded in larger size and non-homogeneous CUs are likely
to be partitioned into small size to be encoded efficiently.
Thus, extracting the features that can describe the video ho-
mogenous can be used to prediction the CU sizes. Motivated
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by state of the art works on video coding [15]-[16], we se-
lect the variance (Var) [15] and Amplitude of Simplified Mass
Center Vector (ASMCV) [16] as the extracted features. Let
I(i, j) be the luminance value of the pixel at (i, j) in 64×64
CU, the Var, ASMCV and the amplitude are respectively de-
fined by Eq. 9, Eq. 10 and Eq. 11 as follows:

Var =
1

64× 64

63∑
i=0

63∑
j=0

[I(i, j)]2 − [
1

64× 64

63∑
i=0

63∑
j=0

I(i, j)]2.

(9)

dxi,j =
∑64/2−1

j=0

∑63
i=0( 64

2 − j)× |I(i, j)− I(i, 64-j-1)|,
dyi,j

=
∑64/2−1

i=0

∑63
j=0( 64

2 − i)× |I(i, j)− I(64-i-1, j)|,

ASMCV = dxi,j + dyi,j . (10)

Amp =
√

ASMCV2 + Var2. (11)

3. BIG DATA ANALYSIS AND PROPOSED TEXTURE
INTRA SIZE DECISION MODEL

In this section, we describes in details and step by step, the
selecting training data set for AM-PCM clustering, the big
data analysis and finally the establishment of the proposed
model decision for fast texture intra CU coding.

The training data set was composed by multiple video
sequences, ”Kendo,” ”Balloons,” ”Newspaper,” ”Ponznan-
Hall2,” ”PonznanStreet,” ”Undodancer,” ”Shark” and ”GT-
Fly” proposed by the JCT-3V [17]. We compute the Var (Eq.
9) and ASMCV (Eq. 10) features for all CU of the first texture
frame from every 24 texture frames (intra coding period) and
sorted according to amplitude (Eq. 11), totally of 100554
64×64 CUs. From this sorted data, we start selecting the
features vectors by a frequency of 25 as the input AM-PCM
training to take into consideration all possible content, totally
of 4000 vectors. As described in Alg. 1, the outputs of the
AM-PCM are the cluster centers, totally of 976 cluster centers
sorted according to the amplitude.

The goal of this paper is to estimate a model size decision
to predict CU splitting flags based on the big data analysis and
then reduce the texture intra coding computational complex-
ity. For that purpose, we construct our big data set using all
texture CUs of all eights sequences [17], totally of 2430900
64×64 CUs, each element of this big data set is composed
by variance, ASMCV and CU size label. We combine the big
data set and the center clusters by distributing each element of
the big data to its center cluster how minimize the Euclidian
distance. For each center cluster, we determine the dominant
sizes modes based on the percentage distribution sizes modes,
if the size mode percentage is great than 10%, it well be con-
sidered as dominant mode, else, it will be ignored. Regroup-
ing the clusters that have the same dominant sizes modes, we
get exactly five regions. Please note that this process is done
for all texture QPs (25, 30, 35 and 40). Tab. 1 presents the

Table 1. The intra size modes distribution for all QPs in each
cluster for texture frames

Index QP Coding Unit Size
64×64 32×32 16×16 8×8 4×4

1

25 96.60% 3.40% 0.00% 0.00% 0.00%
30 97.56% 2.39% 0.04% 0.00% 0.00%
35 96.66% 3.34% 0.00% 0.00% 0.00%
40 93.40% 6.16% 0.42% 0.03% 0.00%

Average 96.06% 3.82% 0.12% 0.01% 0.00%

2

25 52.32% 41.18% 6.07% 0.33% 0.10%
30 67.48% 28.17% 3.85% 0.04% 0.10%
35 72.21% 23.43% 3.59% 0.67% 0.10%
40 70.51% 24.73% 4.07% 0.62% 0.08%

Average 65.63% 29.38% 4.40% 0.42% 0.10%

3

25 23.07% 52.63% 18.93% 4.43% 0.94%
30 27.16% 47.07% 19.79% 5.08% 0.90%
35 25.04% 46.80% 21.15% 6.05% 0.96%
40 25.31% 47.94% 21.57% 4.82% 0.36%

Average 25.15% 48.61% 20.36% 5.10% 0.79%

4

25 10.91% 46.55% 28.49% 11.22% 2.83%
30 11.54% 46.29% 29.72% 10.43% 2.03%
35 11.72% 44.12% 29.78% 12.22% 2.15%
40 8.92% 47.67% 33.79% 9.05% 0.58%

Average 10.77% 46.16% 31.45% 10.73% 1.90%

5

25 2.92% 32.10% 34.23% 21.53% 9.23%
30 3.61% 33.29% 36.14% 20.51% 6.44%
35 3.76% 34.78% 37.99% 19.13% 4.34%
40 4.66% 39.05% 40.32% 14.68% 1.29%

Average 3.74% 34.81% 37.17% 18.96% 5.32%

Table 2. Unified fast intra coding size for texture frames

Amp Coding Unit Size
64×64 32×32 16×16 8×8 4×4

Amp < Th1 X - - - -
Th1 ≤ Amp < Th2 X X - - -
Th2 ≤ Amp < Th3 X X X - -
Th3 ≤ Amp < Th4 - X X X -

Amp ≤ Th4 - X X X X

Table 3. The thresholds according to QP for texture

QP Thresholds
Th1 Th2 Th3 Th4

25 5657.00 98727.6 426771.41 504187.06
30 16275.99 206813.62 621200.25 671023.108
35 16275.99 330096.36 875510.53 960894.37
40 165472.06 488527.10 1381988.19 1550151.40

distribution result after regrouping process. Taking into con-
sideration the distribution result presented in Tab. 1, we define
a unified 3D-HEVC fast intra coding size for texture. Tab. 2
presents the unified model according to four thresholds, the
symbol ”X” represents the supported sizes for a given thresh-
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Fig. 2. The curves of the thresholds and their mathematical
modeling functions.

old. The thresholds are calculated based on the amplitude of
the regrouping clusters centers, which are defined in Tab. 3
for all texture QPs. Let set Q=(QP-20)/5, The mathematical
modeling of the four proposed thresholds are described in Eq
12 and their curves are presented in Fig. 2.


Th1(Q) = 26636 ·Q3 − 165125 ·Q2 + 319542 ·Q− 175396.

Th2(Q) = 3325.2 ·Q3 − 12353 ·Q2 + 121868 ·Q− 14113.

Th3(Q) = 32048 ·Q3 − 162345 ·Q2 + 457131 ·Q + 99938.

Th4(Q) = 29392 ·Q3 − 114833 ·Q2 + 305593 ·Q + 284036.

(12)

4. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed fast texture intra coding size decision in comparison
with 3D-HEVC encoder. All the experiments are based on
Common Test Conditions (CTC) [17] and executed in refer-
ence software HTM-16.2 [18]. The video test sequences used
are presented as follow: ”Kendo,” ”Balloons,” ”Newspaper,”
”PonznanHall2,” ”PonznanStreet,” ”Undodancer,” ”Shark”
and ”GT-Fly” in which each sequence contains three texture.
For all experiments, we use all-intra configuration and rec-
ommended CTC QPs for texture, namely 25, 30, 35 and 40.
The coding performance is evaluated based on the coding
time reduction (∆T), (BD-BR, BD-PSNR)[19] and (∆BR,
∆PSNR) of the texture using YUV-PSNR. The test platform is
Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz, 8GB RAM
with Microsoft VS C++ 2010 compiler.

In Tab. 4, we summaries the performance of the proposed
size decision model. Up to 54.12% and 20.43% respectively
as the maximum and the minimum time saving. The proposed
method achieves an average complexity reduction of 36.33%.

Table 4. Experimental results of the proposed algorithm
Sequences BD-BR BD-PSNR ∆BR ∆PSNR ∆T

(%) (dB) (%) (dB) (%)
Balloons 0.26 -0.013 0.12 -0.008 28.94
Kendo 0.43 -0.019 0.30 -0.007 33.45

Newspaper1 0.16 -0.010 0.08 -0.007 20.43
GTFly 1.93 -0.094 0.98 -0.044 47.25

PonznanHall2 1.04 -0.025 0.52 -0.014 54.12
PonznanStreet 0.34 -0.013 0.26 -0.009 29.49
UndoDancer 0.30 -0.016 0.12 -0.011 33.78

Shark 1.17 -0.049 0.36 -0.033 43.21
1024x768 0.28 -0.030 0.17 -0.007 27.61
1920x1088 0.95 -0.039 0.45 -0.022 41.57

Average 0.70 -0.030 0.34 -0.017 36.33

Table 5. The performance of the proposed algorithm under
different QPs

QP ∆BR (%) ∆PSNR (dB) ∆T (%)
25 0.12 -0.006 25.21
30 0.25 -0.011 31.97
35 0.37 -0.017 38.67
40 0.63 -0.032 49.48

This coding time reduction is particularly high for low motion
sequences ”PonznanHall2” (54.12%), but is still obvious for
rich motion sequences such as ”UndoDancer” (33.78%) and
”Shark” (43.21%). Moreover, the proposed algorithm bring
0.70%, 0.34% increase respectively for BD-BR and ∆BR and
0.030dB, 0.017dB decrease respectively for BD-PSNR and
∆PSNR when compared to HTM-16.2. Tab. 5 presents more
details experiments results (∆BR, ∆PSNR and ∆T) of the
proposed overall algorithm under different QP compared to
3D-HEVC. As shown in Tab.5, with the QP increase, the en-
coder runtime savings increase, ∆BR increases and the qual-
ity drop increase.

Comparing the proposed algorithm to related works that
also propose 3D-HEVC fast intra coding unit, all related
works are focusing only on fast depth map intra coding unit,
it is not possible to make any fair comparison with the present
work.

5. CONCLUSION

The proposed method presented in this work performs the big
data analysis based on Automatic Merging Possibilistic Clus-
tering Method to extract a CU size model decision for texture
intra coding. Based on this model, we predict CU splitting
flags and then reduce the computational complexity of the en-
coder. The comparative experimental results demonstrate that
the proposed model reduce significantly the computational
complexity into 36.33% on average for limited BD-BR, ∆BR,
BD-PSNR and ∆PSNR losses.
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