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ABSTRACT
Image denoising on mobile cameras requires low complexity,
but many state-of-the-art denoising methods are computation-
ally intensive. We present a low complexity denoising algo-
rithm using an edge-aware recursive filter (RF). We make two
contributions. First, we modify the original RF so that it is
significantly more robust when estimating the gradients from
noisy inputs. We extend the RF to high-order for texture and
heavy noise images. Second, we introduce a SURE-based im-
age fusion technique. We show that while individual RFs have
different performance, the fused result is often better. Exper-
imental results show that the new RF performs much faster
than other denoisers while providing good quality images.

Index Terms— Image denoising, recursive filter, edge-
preserving, mobile camera

1. INTRODUCTION

1.1. Motivation

While image denoising algorithms over the past decade have
produced many promising results [1–12], the computational
complexity of the majority remains high. In order to support
future imaging applications on mobile cameras and miniature
robots, there is a pressing need for simple but effective algo-
rithms. The goal of this paper is to present a new method
with low complexity while offering satisfactory performance
relative to state-of-the-arts.

The key element of our proposed method is the domain
transform edge-aware recursive filter by Gastal and Oliveira
[13, 14] (or RF in short). RF is an infinite impulse response
(IIR) approximation to the standard edge-aware filters, e.g.,
bilateral filter [15] or non-local means [1]. The complexity
of RF is low because the filter weights are recursively esti-
mated. However, the original RF was designed for graphics
applications such as stylization, abstraction, and contrast en-
hancement, etc. One implicit assumption is that the image to
be processed must be clean so that the distance can be accu-
rately approximated. Image denoising does not fit the frame-
work because the input is noisy.

Modification of the RF to image denoising was first pro-
posed by Wong and Milanfar [17]. Their denoiser, termed
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(a) noisy σ = 20/255 (b) Our 3rd-order RF, 30.19dB
0.279 sec / .mex

(c) NLM, 29.97dB (d) BM3D, 31.65dB
8.24 sec / .mex 3.408 sec / .mex

Fig. 1. Comparison of image denoisers. For fair comparison,
we implement all denoisers on the same MATLAB .mex plat-
form. BM3D [3] is run using the default settings. NLM [1]
uses the implementation in [16] with a search window 15×15
and patch size 7× 7.

Turbo Denoiser, enables RF to handle noisy inputs by using a
boosting procedure and a look-up table to identify important
edges for boosting. When the noise is spatially varying, it was
reported that Turbo Denoiser performs similarly to BM3D;
Yet, when the noise is i.i.d., there is unfortunately no data for
comparison. Reproducing results of Turbo Denoiser is diffi-
cult, because the look-up table is proprietary and details of
many steps are not discussed.

In this paper, we present an improved recursive filter
for fast and robust denoising. To provide readers a quick
overview, we show in Figure 1 a comparison between non-
local means [1], BM3D [3] and the proposed method on i.i.d.
Gaussian noise. We implement all algorithms on the same
MATLAB .mex platform to ensure fairness. As shown in the
figure, although BM3D generates better PSNR, its runtime is
10 times more than the proposed method.
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1.2. Contributions

This paper has two key contributions summarized as follows.
First, we modify the original recursive filter for denoising.

We extend the pixel-wise gradient estimation to patch-wise
estimation to improve the robustness against noisy input. We
develop high-order RF to handle heavy noisy and texture im-
ages. Both our 1st and 3rd order RF are significantly better
than the original RF by Gastal and Oliveira [13].

Second, we present a SURE-based image fusion tech-
nique by taking convex combinations of the recursive filter
outputs. As will be discussed, 1st-order and 3rd-order RF
have different performance regimes. Our fusion technique
combines the two denoisers and yields better results.

2. PROPOSED METHOD

2.1. The Original First Order RF

We start by reviewing the first order recursive filter originally
proposed by Gastal and Oliveira [13]. Denoting I[n] as the
noisy image and J [n] as the denoised image, RF computes
J [n] by using a recursion:

J [n] = (1− ad[n])I[n] + ad[n]J [n− 1]. (1)

In this equation, the scalar constant a = exp(−
√

2/σs) is
a user defined parameter controlling the relative emphasis of
I[n] and J [n − 1]. The spatially varying power d[n] is the
gradient of I[n] at n:

d[n] = 1 +
σs
σr

∣∣∣I[n]− I[n− 1]
∣∣∣ = 1 +

σs
σr

∣∣∣∇I[n]
∣∣∣, (2)

where σs and σr are the spatial and range parameters, respec-
tively. Since (2) can be pre-computed prior to the recursion,
and J [n] is computed independently for each row, the overall
recursion in (1) is very fast to compute. For 2D signals, one
can sequentially perform (1) forward and backward along two
directions (totally 4 times). For color images, one repeat this
sequence of operations for each color.

The reason why (1) is an edge-aware filter can be seen by
expanding the recursion:

J [n] =

n∑
`=0

(∏̀
k=0

ad[n−k+1]

)
(1− ad[n−`])I[n− `], (3)

with the assumption that d[n + 1] = 0. Substituting (2) into
(3), we can show that the product inside the summation is

∏̀
k=0

ad[n−k+1] = exp

{
−
√

2

σs

∑̀
k=0

(
1 +

σs
σr
|∇I[n− k]|

)}
,

which is essentially the bilateral filter weight with the range
part approximated by the sum of absolute difference. Thus if

there is an edge, the gradient will be large and so the expo-
nential will be small.

The performance of the RF depends heavily on the accu-
racy of d[n], which, in turn, depends on the quality of I[n].
If I[n] is noisy, then (2) will become an under estimate of
true gradient magnitude. When this happens, no matter how
we tune the parameters σs and σr, the final denoising perfor-
mance will still be degraded. Figure 2 illustrates an example.

(a) Original RF [13] (b) Our 1st-order RF
27.38dB 30.77dB

Fig. 2. Comparison between the original RF in [13] and the
proposed 1st order RF. Noise level is σ = 20/255. Parame-
ters of both methods are optimized to produce the best results.

2.2. Proposed First Order RF

If I[n] is noisy, then the most straight-forward solution to im-
prove the robustness is to adopt a pre-filtering step to generate
a less noisy “reference” [12, 18]. Then we can use the refer-
ence for computing the gradient. Besides, we modify (2) by
using a standard technique in NLM [1]:

d[n] = 1 +
σs
σr

max
(∣∣∣∇I[n]

∣∣∣− σ, 0) , (4)

which is a soft-thresholding of the gradient magnitudes so that
any

∣∣∣∇I[n]
∣∣∣ smaller than σ will become 0.

In addition to these two “standard” steps, we extend the
pixel-wise distance to a patch-based distance as the latter is
more robust to noise. Intuitively, this modification is analo-
gous to the patch distance in NLM [1] relative to the pixel
distance in bilateral filter [15].

The conventional definition of the patch-distance ∆ be-
tween the n-th and the m-th patch is

∆(I[n], I[m]) =

P−1∑
p=0

h[p]
∣∣∣I[n− p]− I[m− p]

∣∣∣,
where P is the dimensionality of a patch, and h[p] is the
weight kernel. In RF, we modify the definition of d[n] as

d[n] = 1 +
σs
σr

max

{
P∑
p=0

h[p]
∣∣∣∇I[n− p]

∣∣∣− σ, 0} . (5)

It is not difficult to see that the complexity of computing d[n]
is significantly lower than ∆(I[n], I[m]) because d[n] is in-
dependent of m.
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2.3. Proposed High-Order RF

One limitation of the 1st-order RF is that the distance d[n] will
become less accurate when noise level increases and when
image contains texture. This is attributed to the fact that the
sum of the gradients in (4) fails when there are multiple edges
within the range of the summation.

In order to enable RF for high-noise and heavy texture
problems, we extend the 1st-order RF to high-order RF. The
idea is to generalize the recursion as

J [n] = b0I[n] +

Q∑
i=1

αia
di[n]J [n− i], (6)

where Q specifies the order of the RF. In our work, we find
that Q = 3 is sufficient and higher orders have diminish-
ing benefits. The filter coefficients {b0, α1, . . . , αQ} are fixed
constants. The i-th distance di[n] is defined as

di[n] = i+
σs
σr

P∑
p=0

h[p]
∣∣∣I[n− p]− I[n− i− p]

∣∣∣, (7)

which replaces the one pixel finite difference I[n] − I[n −
1] in (2) by the i-th order finite difference I[n] − I[n − i].
Geometrically, di[n] skips pixels when estimating the distance
so that it is more tolerant to textures.

When using (6), we need to pay extra attention to the nor-
malization because the transfer function (i.e., the frequency
response) of (6) should have a unit gain. To solve this prob-
lem, we consider an all one signal 1[n] = 1 for all n, and
define J [n] as the ratio of two terms Jnum[n] and Jden[n]:

J [n] =
Jnum[n]

Jden[n]
, (8)

where Jnum[n] is computed using (6) with the noisy I[n], and
Jden[n] is computed using I[n] = 1[n].

The performance of the 3rd-order RF compared to the
1st-order RF is shown in Figure 3. In this example, we
choose a heavy texture pattern image with high noise level
σ = 50/255. We compared the PSNR between the two RFs
and we also compute the SSIM score to verify the visual
quality. It is clear from the result that the 3rd-order RF has
higher PSNR while maintaining the SSIM score.

2.4. SURE-based Image Fusion

While the results in Figure 3 shows that 3rd-order RF has
better denoising performance, the gap could be less substan-
tial for images with less textures. In some cases, such as
cameraman, 1st-order RF is actually better. To achieve a
uniformly better performance of the two methods, we present
a simple but effective image fusion technique.

Denote J1st[n] and J3rd[n] as the results of 1st-order and
3rd-order RF, respectively. Our goal is to find a weight λ such

1st-order RF 3rd-order RF
22.66dB, 0.900 23.40dB, 0.907

Fig. 3. Comparison between 1st order RF and 3rd order RF
on a texture-heavy image. The noisy level is 50/255. Note
that while both methods have almost the same SSIM score,
3rd-order RF has substantially better PSNR.

that the linearly combined result

Ĵ [n] = λJ1st[n] + (1− λ)J3rd[n] (9)

will have better denoising performance. Intuitively, what this
linear combination does is to balance the undersmoothing and
oversmoothing of the two denoisers.

To choose the weight λ, we start by considering the or-
acle case where the ground truth J∗[n] is available. When
J∗[n] is available, we can compute the PSNRs of the de-
noised results: η1st

def
= PSNR(J1st[n], J∗[n]) and η3rd

def
=

PSNR(J3rd[n], J∗[n]). Accordingly, we can define the
weight w1st (and w3rd) as

w1st = exp

{
− (η1st −max (η1st, η3rd))

2

2σ2
η

}
, (10)

where ση is a constant. The interpretation of (10) is that
among the two denoisers, one of them produces a higher
PSNR max (η1st, η3rd). If η1st is close to the higher PSNR
(or if it is the higher PSNR), then it is desirable to have w1st

large. The cutoff is controlled by ση , which is one standard
deviation of a Gaussian. Typically, we choose ση = 1, mean-
ing that any PSNR with more than 1dB deviation from the
maximum is regarded as insignificant. Once w1st and w3rd

are defined, the weight constant λ in (9) is

λ =
w1st

w1st + w3rd
, and 1− λ =

w3rd

w1st + w3rd
. (11)

In the absence of ground truth J∗[n], one way to estimate
the PSNR is by means of Stein’s Unbiased Risk Estimator
(SURE) [19]. Here, we use the Monte-Carlo SURE [20] be-
cause the recursive filter does not allow us to derive closed-
form expressions. Given the SURE estimates, we can com-
pute the corresponding PSNR estimates as

PSNR
(
J1st[n], J∗[n]

)
≈ 10 log10 SURE

(
J1st[n], I[n]

)
,
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Image BM3D NLM J1st[n] J3rd[n] Ĵ [n] BM3D NLM J1st[n] J3rd[n] Ĵ [n]

σ = 10 σ = 20
Baboon512 33.12 30.11 31.33 32.41 32.41 29.05 26.74 26.86 28.41 28.42

Cameraman256 34.16 31.04 33.50 33.33 33.48 30.44 28.27 29.76 29.64 29.79
House256 36.69 34.75 35.11 35.12 35.23 33.86 32.40 32.15 32.25 32.31
Man512 33.96 32.03 33.06 33.33 33.43 30.54 29.20 29.45 29.76 29.90

Peppers256 34.69 33.03 33.90 33.82 34.10 31.23 29.97 30.32 30.20 30.50
16-image average PSNR 34.62 32.44 33.51 33.75 33.87 31.36 29.71 29.97 30.29 30.41
16-image average SSIM 0.915 0.872 0.895 0.901 0.902 0.855 0.805 0.815 0.824 0.829

Runtime /s 2.33 13.13 0.05 0.14 0.35 2.74 14.34 0.05 0.12 0.35
σ = 30 σ = 50

Baboon512 26.82 25.02 24.68 26.20 26.18 24.27 23.39 22.96 23.86 23.86
Cameraman256 28.69 26.54 27.59 27.54 27.81 26.03 24.46 24.45 24.76 25.02

House256 32.16 30.70 29.87 30.05 30.38 29.93 28.38 27.17 27.23 27.30
Man512 28.81 27.89 27.64 28.03 28.14 26.75 26.07 25.80 25.95 26.11

Peppers256 29.32 28.33 27.92 27.89 28.18 26.78 25.66 24.78 24.93 25.00
16-image average PSNR 29.55 28.19 27.97 28.29 28.45 27.27 26.13 25.75 25.84 26.08
16-image average SSIM 0.810 0.759 0.757 0.761 0.771 0.743 0.686 0.678 0.657 0.676

Runtime /s 2.65 14.05 0.05 0.12 0.33 3.24 13.54 0.04 0.12 0.33

Table 1. Image denoising results: individual PSNR, average PSNR, average SSIM and runtime.

where in this equation we emphasize that SURE requires the
denoised image J1st[n] and the noisy input I[n].

The complexity of Monte-Carlo SURE is approximately
twice of the individual denoiser, as the Monte-Carlo needs to
probe the denoiser twice in order to estimate the divergence
used in SURE. As a comparison with the 1st-order RF and
the 3rd-order RF, we show in Figure 4 the results of J1st[n],
J3rd[n] and Ĵ [n]. In this particular example, we observe that
J1st[n] has better performance than J3rd[n] as the image is
mostly flat. However, using the proposed SURE-based im-
age fusion technique, we can boost the performance by about
0.1dB over J1st[n] and 0.3dB over J3rd[n].

(a) Noisy σ = 20/255 (b) J1st[n], 29.41dB

(c) J3rd[n], 29.23dB (d) Ĵ [n], 29.54dB
Fig. 4. Denoising results of the SURE-based image fusion.

3. EXPERIMENTAL RESULTS

We compare the proposed RF with BM3D and NLM. We
choose not to compare with neural network (NN) methods
[21,22] because NN typically require GPU and large memory
which are not always feasible on mobile cameras. To ensure
fair comparison, we implement RF in MATLAB .mex so as to
minimize the gap with BM3D. For NLM, we use the imple-
mentation by G. Peyre [16] as the official NLM [23] is C++
/ Linux. For testing, we choose 16 standard test images from
USC SIPI [24]. All experiments are run on a laptop with Intel
i7 4.4GHz / 8MB Cache / Windows 10.

The results are shown in Table 4. At low noise σ =
10, 20, 30, both PSNR and SSIM improves from J1st[n] to
Ĵ [n]. For σ = 50, although PSNR improves, the SSIM stays
the same. One reason is that J3rd[n] is more susceptible to
artifacts as it is intrinsically a bandpass filter. This suggests
that RF is more suitable for low-noise problems. For runtime,
RF is significantly faster than NLM and BM3D.

4. CONCLUSION

We present an edge-aware recursive filter (RF) for fast and
robust image denoising. We offer three versions of the fil-
ter: 1st-order RF for very fast denoising, 3rd-order RF for
improved performance with more computing, and a fusion
method that produces the most robust result but requires
longer runtime. Our experimental results show that while RF
does not outperform advanced denoisers such as BM3D, its
very short runtime makes it possible for potential applications
on mobile cameras. We anticipate that additional speed-up
can be achieved by porting the algorithm to optimized plat-
forms, e.g., Halide / C++.
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