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ABSTRACT
In this work we pose the parameter estimation of the Poisson-
Gaussian noise model as a parametric model estimation prob-
lem. We first take patches from the image/video to analyze
and treat variance stabilization transforms, e.g., the classi-
cal Generalized Anscombe transform, as a parametric model,
which we fit to the patches using the Hough transform. This
algorithm allows to successfully estimate the noise parame-
ters, is computationally efficient, and is fully parallelizable.
We present an application to calcium imaging data, where the
estimated parameters are used to enhance state-of-the-art pro-
cessing pipelines.

Index Terms— Poisson-Gaussian noise, Generalized
Anscombe transform, Hough transform, calcium imaging

1. INTRODUCTION

A common noise model in typical digital imaging chains is
the Poisson-Gaussian [1, 2]. Under this model, an image v
obtained with some digital image sensor is modeled as

v(x) = αp(x) + n(x), (1)

where p(x) ∼ P(u(x)) is the number of detected pho-
tons, u(x) is the noise-free and unknown image, α >
0 is a constant scaling term (which depends on the sen-
sor’s efficiency and analog gain), and n(x) ∼ N (µ, σ2) is
signal-independent electric and thermal noise. The Poisson-
Gaussian noise model is fully characterized by the parameters
α, µ, and σ. Its first and second moments are

E[v |u] = αu+ µ, (2a)

var[v |u] = α2u+ σ2. (2b)

The vast majority of algorithms [3, 4, 5] for processing v
assume, for simplicity, that it is only contaminated with Gaus-
sian noise (i.e., v = u + n). Variance stabilization seeks to
eliminate the dependency between the noise-free image and
the noise variance, Eq. (2b), allowing the use of the vast col-
lection of off-the-shelf image processing algorithms [5]. This
is usually done by applying a variance stabilization transform
(VST), i.e., a function f : R→ R such that

var[fα,µ,σ(v) |u] ≈ 1. (3)

A popular choice for such a function is the Generalized
Anscombe transform (GAT) [6, 1],

fα,µ,σ(z) = 2

√
max

(
z
α + 3

8 + σ2−αµ
α2 , 0

)
. (4)

Evidently, correctly estimating the parameters α, µ, σ is crit-
ical for proper variance stabilization. Notice that even algo-
rithms that consider Poisson-Gaussian noise require a correct
estimation of these parameters [5, 7].

In this paper, we show that the Poisson-Gaussian noise
mode parameters can be found in a simple and yet efficient
way. We first take patches from the image/video to analyze
and treat the GAT as a parametric model, which we fit to
the patches using the Hough transform (HT) [8]. The key
insights behind this idea are two-fold. First, we often do
not need a very high numerical precision in the estimated
values. Second, although non-convex, the problem is very
low-dimensional (just three scalars, but can be reduced to two
without loss of generality).

The HT is a feature extraction technique used in image
analysis, computer vision, and digital image processing [8].
The technique is used to find imperfect instances of objects
within a certain class of shapes by a voting procedure. Our
target shape is the zeroth iso-level of var[fα,µ,σ(v) |u]− 1.

The remainder of this paper is organized as follows. Sec. 2
describes the proposed method. In Sec. 3 we present an ap-
plication to the analysis calcium imaging data, showing that
correctly estimating the noise parameters enhances the per-
formance of state-of-the-art processing pipelines. Finally, in
Sec. 4 we offer some concluding remarks.

2. ESTIMATING POISSON-GAUSSIAN NOISE WITH
THE HOUGH TRANSFORM

The rationale behind the GAT, Eq. (4), is quite simple. Using
the first-order Taylor expansion of a VST f around z = αu+
µ, we can approximate

var[f(v) |u] ≈ var[f(z) + f ′(z) (v − z) |u]

≈ (f ′(z))
2
var[v |u]. (5)

Using Eq. (3) and assuming that the approximations hold ex-
actly, we can pose f ′(z) = (α2u + σ2)−1/2. Finally, inte-
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grating we get

fα,µ,σ(z) =
2
α

√
αz− αµ+ σ2. (6)

The 3/8 factor in the GAT accounts for additional terms in
the variance expression [6].

Let v be an image generated according to Eq. (1) and set
µ = 0. Assume that (i) the variance-stabilizing transform
constructed using the correct noise parameters achieves exact
stabilization, i.e., var[fα,σ(v) |u] = 1; (ii) for estimates α̂, σ̂,

var[fα̂,σ̂(v) |u] =
(
f ′α̂,σ̂(z)

)2
var[v |u]. (7)

Proposition 1 ([9]) We consider an image block B, with
pB(u) being the PDF of u over B. The solution of∫

var[fα̂,σ̂(v) |u] pB(u) du = 1, (8)

is locally a simple smooth curve in a neighborhood of (α, σ)
in the (α̂, σ̂) plane.

Proposition 1 yields an important algorithmic insight. As
each image block generates a smooth curve in the (α̂, σ̂)
plane, when working with multiple blocks, the correct pa-
rameters should lie at the intersection of all these curves.

Makitalo and Foi [9] propose to estimate the noise pa-
rameters with the following two-step algorithm: (i) choose K
patches vk at random from image v; (ii) compute the esti-
mates α̂, σ̂ using

min
α,σ

K∑
k=1

`(var[fα,σ(vk) |uk]− 1), (9)

where ` is a non-linearity (e.g., the Huber loss). This is a
highly non-convex optimization problem and solving it in
practice is not easy [9]. Other alternatives also propose fairly
complicated algorithmic chains [10].

The HT is a natural candidate to solve this estimation
problem (i.e., find the intersection of curves on a plane). First,
the parameter space is low-dimensional. Second, we know in
advance that we are interested in detecting a single GAT (a
single parametric model), which significantly simplifies the
use of the HT. Finally, it is fully parallelizable, which is a
significant advantage for video processing.

2.1. Specifying the Hough transform

The input dataset is composed of K 2D patches {vk}Kk=1 ex-
tracted from the noisy image v. In videos, we just extract 2D
patches from different frames to avoid dealing with motion.
By default, we use 8× 8 patches.

Using the GAT (Eq. (4)) as our variance stabilization
method of choice implies that the cases n(x) ∼ N (µ, σ2) and
n(x) ∼ N (0, σ2 − αµ) are treated indistinctly. We will thus

Alg. 1: Noise estimation with the Hough transform
input : noisy image v, number K of patches to use.
output : GAT parameter estimates αfinal, βfinal.

1 Choose the random patches {vk}Kk=1 from v;
2 Solve the linear system in Eq. (13) obtaining αinit, βinit;
3 ∆α ← 0.9α;
4 ∆β ← max(2 · 103, |βinit|);
// Build coarse accumulator space

5 Get 100 equally spaced samples αi in the interval
[αinit −∆α, αinit + ∆α];

6 Get 100 equally spaced samples βj in the interval
[βinit −∆β , βinit + ∆β ];

7 (∀i, j) Acoarse
i,j ←

∑K
k=1 SM(var[fαi,βj (vk) |uk]− 1)

αmid, βmid ← argmaxi,j A
coarse
i,j ;

// Build focused accumulator space
8 Get 100 equally spaced samples αi in the interval

[αmid −∆α/4, αmid + ∆α/4];
9 Get 100 equally spaced samples βj in the interval

[βmid −∆β/10, βmid + ∆β/10];
10 (∀i, j) Afocus

i,j ←
∑K
k=1 SM(var[fαi,βj (vk) |uk]− 1)

11 αfinal, βfinal ← argmaxi,j A
focus
i,j ;

generically set β = σ2 − αµ, implying that n(x) ∼ N (0, β).
Then, our simplified GAT is

fα,β(z) = 2

√
max

(
z
α + 3

8 + β
α2 , 0

)
. (10)

Notice that this change of variables reduces the parameter
space from the original three dimensions to just two (µ cannot
be disentangled from αu anyway).

With our target var[fα,β(v) |u] = 1 in sight, we define
our parametric model as the zeroth iso-level of a function

h(α, β) = {u∗ , var[fα,β(v∗) |u∗]− 1}, (11)

where u∗ is a patch not necessarily contained in our dataset.
The HT uses a 2D array A, called an accumulator, which

is a discretized version of the plane defined by α and β. Each
bin (i, j) in the accumulator encodes a pair (αi, βj). Unfor-
tunately, it is not trivial to discretize this space, as no upper
and lower bounds are known a priori. Let us explain how we
build and populate the accumulator, as detailed in Alg. 1.

From eqs. (2a) and (2b), we get the relation

var[v |u] = αE[v |u] + (σ2−αµ) = αE[v |u] + β, (12)

and the linear system [11, 12],

(∀k) var[vk |uk] = αE[vk |uk] + β. (13)

Using robust linear regression (with a Huber loss), we obtain
the initial estimates αinit and βinit. These estimates consti-
tute the center bin of our accumulator. We then build suitable
(conservatively large) ranges for α and β and discretized val-
ues for αi and βj . We are interested in patches that lie very
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Table 1. Incorporating variance stabilization as a pre-processing improves
the performance of neuron detection in calcium imaging data using an online
NMF-based algorithm [15]. Performance is quantified using precision, recall
and the F1 score (their harmonic mean).

VST+OnACID OnACID
F1 score 0.82 0.80
Precision 0.83 0.78

Recall 0.81 0.82

close to our parametric model. We populate the accumulator
using the formula

Ai,j =

K∑
k=1

SM(h(αi, βj)), (14)

where h is defined in Eq. (11) and SM(s) = exp(−(s/ε)2))
and ε = 10−2. This soft-membership function allows to ac-
count for small inaccuracies in the estimation.

Noticing that the populated accumulator is in general rela-
tively smooth, we use two scales to accelerate the algorithm’s
running time. We first build a coarse accumulator and detect
its peak. Zooming in an small area around the peak, we build
a finer accumulator and populate it using Eq. (14). The peak
of this focused accumulator constitutes our final estimation.

A missing ingredient in Alg. 1 is the computation of
E[wk |uk] and var[wk |uk] without knowing uk (wk = vk
in Eq. (12) or wk = fα,σ(vk) in Eq. (14)). Depending on
the amount of structure (texture, edges, etc.) in the patches,
different estimators can be employed: from sample mean
and variance [12], to high-pass filters [9, 13], to more so-
phisticated methods [14]. In our experiments with calcium
imaging, we use the sample mean and variance for simplicity.

Finally, several constants are used for the creation of the
accumulators in Alg. 1. These should provide ample ranges
for α and β and their details are application-specific (we detail
our choices for calcium imaging data).

3. APPLICATION TO CALCIUM IMAGING DATA

We tested the utility of the GAT, with parameters estimated
using the proposed method, as a pre-processing step for de-
tecting neurons in two photon fluorescent microscopy time
series data (calcium imaging) [16]. In general, the spatio-
temporal activity of each neuron is expressed by the outer
product of a vector in space that expresses the location and
shape of each neuron, and a vector in time that expresses its
activity during the experiment. Then the neurons can be ex-
tracted using matrix factorization methods, such as indepen-
dent components analysis [17] or non-negative matrix factor-
ization [18, 19].

While effective, these approaches typically rely on Gaus-
sian noise assumptions, an assumption that is violated by
the multiplicative characteristics of the microscope photon
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Fig. 1. Testing the Poisson-Gaussian as measurement noise model for 2p
imaging data using fluorescent beads. Top: Mean across time of the fluores-
cence over the entire FOV. A part in the center of the FOV is progressively
ablated to expose different mean fluorescence levels. Middle: Variance ver-
sus mean plot for all pixels and all movies. A linear fit explains the observed
scatter plot (r2 = 0.945), justifying the Poisson-Gaussian noise model. Bot-
tom: Histograms of each frame’s variance after the VST application. The
VST equalizes the variance (the target is 1), and performs better when esti-
mated over multiple frames (10 in this case).

noise. We first tested whether measurement noise in calcium
imaging can be described by the Poisson-Gaussian model (a
model that has been used in other studies, e.g., [7]), by gath-
ering noise statistics on synthetic fluorescent beads that were
progressively photobleached around the center to expose five
different levels of fluorescence emissions (Fig. 1-top). For
individual pixels, the variance scales linearly with the mean
(r2 = 0.945) across all different movies (Fig. 1-middle).
When dealing with the mean and variance of 8 × 8 patches,
the results were largely the same (data not shown). We then
applied the Hough-VST transform, as estimated from a single
or multiple (N = 10) frames for each movie. Fig. 1-bottom
shows histograms of the variance of individual pixels for all
different movies, and demonstrates that the transformation
stabilizes the variance across the FOV when its parameters
are estimated from multiple frames.

To test whether preprocessing the data by applying the
GAT improves the performance of source extraction we use
OnACID [15], a state of the art online NMF-based source ex-
traction algorithm, on a 90000 frame long 500 µm × 500µm
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Fig. 2. Demonstration of the proposed Hough-based noise estimation pipeline. Left: Mean versus the variance scatter plot for every patch extracted from the
video. The estimated parameters α, β are also plotted as lines, see Eq. (12). Center left: The coarse accumulator from Alg. 1. This accumulator looks like the
typical Hough accumulator. Center right: The focused accumulator from Alg. 1. The detected peak might not be at its very center. No new spurious peaks
appear when zooming-in in the desired area, making the proposed two-scale approach fast and accurate. Right: We compute the sample variance of every
patch after applying the GAT using the initial and the final estimates. Alg. 1 further stabilizes the variance (bringing it closer to 1).

Mismatches:GroundTruth (red) versus Inferred (white)

Matches: Ground truth versus Inferred (white)

25μm

Fig. 3. Preprocessing calcium imaging data with the GAT enhances the per-
formance of source detection algorithms. Left: Matches between inferred
(white) and manually annotated (red) ROIs on an in vivo mouse hippocampus
dataset. Right: False positive (white) and false negative (red) mismatches be-
tween ground truth and inferred ROIs. All contour plots are superimposed on
the correlation image of the dataset. For ease of exposition only a 250µm ×
250µm part of the FOV is displayed in the figure.

large field of view in vivo mouse hippocampus dataset, im-
aged at 30Hz using the GCaMP3 indicator [20]. Fig. 2 details
the process of the estimating the noise parameters according
to Alg. 1 and the stabilization effect of applying the resulting
GAT. We then used OnACID on the stabilized data to perform
source extraction. Performance was quantified by detecting
the locations of active neurons in the FOV when compared
to manual annotations, measuring precision/recall with an in-
tersection over union metric (see [15] for more details). The
results (Tab. 1) indicate that applying the GAT improves the
performance of OnACID in terms of the F1 score, and en-
ables the accurate detection of most neurons in the FOV (see
Fig. 3). These preliminary results indicate that the GAT trans-
form is a simple tool that can be incorporated, along with the
proposed parameter estimation method, in the calcium imag-
ing data analysis pipelines and improve their performance.

4. CONCLUSIONS

We posed the parameter estimation of the Poisson-Gaussian
noise model as a parametric model estimation problem. We
first take patches from the image/video to analyze and treat
the Generalized Anscombe transform as a parametric model,
which we fit to the patches using the Hough transform. This
simple estimation algorithm is able to successfully estimate
the noise parameters, is computationally efficient, and is fully
parallelizable. We additionally presented an application to
calcium imaging data, where the estimated parameters were
used to enhance state-of-the-art processing pipelines.

As future work, we will further explore the use of variance
stabilization in calcium imaging. We are also aware that there
are many modern techniques for parametric model estimation,
and will consider their us in our particular case.
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