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ABSTRACT

Sparse representation-based classification shows a good per-
formance for face recognition in recent years, but it can not
be suitable for face recognition with illumination and corrup-
tion, which are often presented in the practical application-
s. To solve the problem, in this paper, we propose a novel
SRC based method for face recognition named sparse low-
rank component coding (SLC). In SLC, we utilize the low-
rank component from training dataset to construct dictionary.
The dictionary composed of low-rank component is able to
describe the face feature better, especially for training sam-
ples with illumination and corruption. Our recognition rule
is based on the minimum class-wise reconstruction residual
which leads to a substantial improvement on the performance
of SLC. Extensive experiments on benchmark face databas-
es demonstrate that the proposed method consistently outper-
forms the other sparse representation based approaches for
face recognition with illumination and corruption.

Index Terms— Face recognition, sparse representation,
classification, low-rank component, illumination and corrup-
tion

1. INTRODUCTION

Face recognition is the most popular biometric approach due
to its huge application potentials in the past several decades
[1], [2]. Feature extraction is important for face recognition.
The common techniques are principal component analysis (P-
CA) [3], linear discriminant analysis (LDA) [4], probabilistic
subspace learning [5] and locality preservation [6] and so on.
However, these techniques are hard to solve the images with
illumination and corruption [7]. Recently, some works based
on robust PCA have been proposed to alleviate this problem
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[8], [9], [10]. Thereinto, low-rank matrix recovery (LR) [8] is
a good technique, which can separate corruption better from
the training face images than PCA.

In addition, the classifier is also important for face recog-
nition. Sparse representation-based classification (SRC) has
been proposed and achieved satisfied results [11]. However,
when the dataset is with illumination and corruption, the SR-
C cannot perform well. Thus, some extended SRC methods
have been proposed [12], [13], [14]. Chen et al. proposed a
low-rank matrix approximation algorithm with structural in-
coherence (LRSI) combined SRC [15]. Yang et.al proposed a
robust sparse coding (RSC) by modeling the sparse coding as
a sparsity constrained robust regression problem [16]. Wei et
al. proposed a classification algorithm for face recognition vi-
a robust auxiliary dictionary learning (RADL) [17]. Although
these extended SRC methods can improve the classifiers’ per-
formance, they also present more or less unsatisfied results
for face recognition with illumination and corruption.

In this paper, we propose a novel SRC based method
named sparse low-rank component coding (SLC) which is
robust to face recognition with illumination and corruption.
In this method, we apply the low-rank component to the
training set to construct the dictionary. The low-rank compo-
nent obtained by low-rank matrix recovery from the training
dataset can separate the effective feature and the component
associated illumination or corruption, which can be help-
ful to accurately recognize. Then we obtain the solution of
the proposed SLC by minimizing the influence of residual.
Finally, we minimize class-wise reconstruction residual to
recognize the test image. The experimental results on the
CMU Multi-PIE, Extended Yale B and CAS-PEAL databases
validate that our method performs well for face recognition
with illumination and corruption.

2. RELATED WORKS

Sparse representation-based classification (SRC) is an effec-
tive technique for face recognition. Suppose that there are N
training images fromC object classes. Then, define a training

1693978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



dataset D = [D1, D2, ..., DC ] ∈ Rd×N , where Di consists
of the training images of the ith class as its columns and d
is the dimension of each sample. In SRC, given a test image
y ∈ Rd×1, and the linear representation of y can be rewritten
in terms of all training images as [11]:

y = Dα+ e (1)

where α ∈ RN is a sparse coefficient vector whose entries are
zeros except those associated with the ith class and e ∈ Rd

is a noise term with bounded energy ‖e‖2 < ε. The sparse
solution α can be approximately recovered by solving the fol-
lowing stable l1-minimization problem [11]:

min
α
‖α‖1 + β ‖y −Dα‖22 (2)

where β is a constant for a compromise between sparsity and
reconstruction.

SRC cannot perform well when training images are with
illumination and corruption. Yang et.al modelled the sparse
coding as a sparsity constrained robust regression problem
and proposed the robust sparse coding (RSC). It can be for-
mulated as the following minimization [16]:

min
α
‖α‖1 + βρ (y −Dα) (3)

where residual function ρ (·) is defined as

ρ (e) =

t∑

k=1

(ek)

ρ (ek) =−
1

2µ
(ln(1 + exp(−µe2k + µδ))

− ln(1 + expµδ))

(4)

where t is the total number of ek, ek is the kth entry of e = y−
Dα, and µ and δ are the parameters in the residual function.

Similar to RSC, Wei et.al proposed a classification al-
gorithm for face recognition via robust auxiliary dictionary
learning (RADL). In RADL, the auxiliary dictionary A is
learned from external data for properly handling intra-class
variants. Instead of solving Eq.(3), RADL considers the fol-
lowing minimization problem [17]:

min
α
‖α‖1 + βρ (y −Dα−Ax) (5)

where A is the auxiliary dictionary learned from external da-
ta, x is the coefficient of the auxiliary dictionary A, and the
residual function ρ (·) is the same as RSC used.

3. SPARSE LOW-RANK COMPONENT CODING

3.1. The Model of SLC

Principal component analysis (PCA) is often used for feature
extraction in face recognition. By PCA, the training dataset
D can be initialized by

D = P +Q (6)

where P is the principal component, Q is the non-principal
component. It finds that the best rank-k estimation of P by
minimizing ‖D − P‖2 subject to rank(P ) <= k and it can
be solved by SVD. If an image is corrupted by Gaussian noise,
the principal component obtained by PCA can get optimal
[8]. However, PCA is sensitive to small non-Gaussian noise
often presented in practical face images. This means that the
information captured by PCA remains potential corruption.

Generally speaking, the dictionary that only contain-
s class-specific information is a low-rank matrix. This is
supported by the fact that face images within a class have a
low-rank structure [18]. Thus, whatever the noise is Gaus-
sian, we hope to decompose the training sample matrixD into
the low-rank component (i.e., principal component) L and the
non-low-rank component N . And the low-rank component
L is used to describe face features while the non-low-rank
component N contains the information associated sparse
error.

By low-rank matrix recovery (LR), the training matrix D
can be initialized by

D = L+N (7)

where L is the low-rank component from original training
matrix D and N is the non-low-rank component that asso-
ciated sparse error. This formulation suggests that LR seeks
the lowest rank L that contains all most class-specific infor-
mation. The lowest rank L can be approximately recovered
by solving the following convex surrogate

min
L,N
‖L‖∗ + φ ‖N‖1 , s.t.D = L+N (8)

where the nuclear norm ‖L‖∗, the sum of the singular val-
ues, approximates the rank of L and φ is a constant for a
compromise between L and N . Then, we use the low-rank
component L to construct dictionary.

Once the dictionary L is constructed from training data,
we perform recognition of a test image y as

y = Lα+Nx+ z (9)

where L is a low-rank dictionary, N is a variation dictionary
that associated noises, outlier pixels and occlusions and z is
a reconstruction error. Eq.(9) is the model of the proposed
sparse low-rank coding. RADL uses the external data to learn
the auxiliary dictionary. However SLC, unlike RADL, uses
the low-rank and non-low-rank component from training data
to construct the dictionary.

3.2. The Solution of SLC

SRC can be applied to classify y, because it assumes that the
types of corruption (or occlusion) must be known and present
in training dataset D. It is obvious that this assumption might
not be practical in real-world’s illumination and corruption
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Table 1. Experimental results on the 
CMU Multi-PIE database (%)

Train.
Number 3 4 5 6

LR
73.58
±1.52

79.45
±1.64

83.72
±1.63

87.34
±0.81

LRSI
76.69
±1.06

81.96
±1.13

85.63
±1.52

88.09
±0.88

SRC
67.58
±1.53

81.50
±1.74

88.47
±0.89

91.67
±0.60

RSC
87.03
±0.98

90.22
±0.93

91.27
±0.52

91.81
±0.54

RADL
84.85
±1.39

88.47
±0.99

89.01
±0.86

90.18
±0.56

SLC 88.27
±0.86

90.82
±0.81

92.59
±0.64

93.65
±0.65

Table 2. Experimental results on the 
Extended Yale B database (%)

Train.
Number 3 4 5 6

LR
51.21
±1.77

57.42
±1.92

62.25
±1.08

66.94
±0.66

LRSI
52.63
±1.82

59.15
±1.99

63.66
±1.45

68.13
±0.53

SRC
41.37
±1.27

56.88
±1.67

66.41
±1.13

73.37
±0.97

RSC
65.63
±1.67

74.35
±1.74

79.40
±0.79

83.44
±1.55

RADL
65.23
±1.67

73.06
±2.29

76.66
±1.36

77.96
±2.48

SLC 65.18
±3.15

74.30
±2.32

80.17
±1.18

85.89
±1.20

Table 3. Experimental results on the 
CAS-PEAL database (%)

Train.
Number 3 4 5 6

LR
73.08
±8.19

78.85
±6.13

87.35
±5.41

87.40
±6.27

LRSI
74.30
±8.29

80.91
±6.80

88.79
±5.26

89.61
±4.70

SRC
62.00
±7.19

75.97
±6.01

87.18
±5.66

89.94
±4.94

RSC
70.70
±4.02

78.01
±2.79

90.52
±1.17

92.73
±1.50

RADL
68.19
±3.59

76.91
±3.72

90.76
±1.27

92.92
±1.58

SLC 78.37
±4.17

85.17
±4.75

92.37
±1.82

93.86
±1.37
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M-estimators [18], standard residualfunctions include Huber,
Cauchy, and the Welsch functions. The residual function we
applied is defined as

ρ (z) =
n∑

k=1

(zk)

ρ (zk) =−
1

2η
(ln(1 + exp(−ηz2k + ησ))

− ln(1 + exp ησ))

(10)

where n is the total number of zk, zk is the kth entry of
z = y − Lα − Nx, and η and σ are the parameters in the
residual function. We use this residual function because it has
shown promising results in recent literatures of robust face
recognition [15], [19]. In order to make the representation
error z as small as possible, it is not necessary to put any con-
straint on x. Thus, we consider the following minimization
problem instead of Eq.(5):

min
α
‖α‖1 + λρ (y − Lα−Nx) (11)

where λ is a constant for a compromise.
Then we solve the optimization problem by the technique

of variable substitution and the chain rule for calculating the
derivatives. From the derivation [16], Eq.(11) can be calcu-
lated by repeatedly solving

min
α
‖α‖1 + λ ‖W (y − Lα−Nx)‖2 (12)

where W is a weighting matrix obtained by derivation [16]
and expressed as

W =diag(w(z1), w(z2), ..., w(zd))
1
2

w(zk) =
exp(−ηz2k + ησ)

1 + exp(−ηz2k + ησ)

(13)

where η and σ are the parameters in the residual function.
With W is fixed, we can apply existing techniques such as
Homotopy, Iterative Shrinkage-Thresholding, or Alternating
Direction Method for obtaining the optimal solution. Final-
ly, our recognition rule is based on the minimum class-wise
reconstruction residual.

Let Ci be a class-label matrix of the training data D for
class i, its element Ci(k, k) = 1 if the kth column of D orig-
inates from class i and all other elements of Ci are zero. The
class-wise reconstruction residual is defined by

ri(y) = ‖W (z − zi)‖2 = ‖W (L(I − Ci)α)‖2 (14)

where W is a weighting matrix, L is a low-rank dictionary
and I is an identity matrix. The testing images y is classified
into the class that produces the minimum residual ri(y).

4. EXPERIMENT RESULTS

In this section, we choose the CMU Multi-PIE [20], Extend-
ed Yale B [21], and CAS-PEAL [22] face databases to com-
pare the performance of our method with LR [8], LRSI [14],
SRC [11], RSC [15], RADL [16] and SLC in different exper-
imental circumstances. Thereinto, RADL applies variation
data instead of external data to obtains the auxiliary dictio-
nary with the same setting as [16]. All images are cropped
with size 32 × 32 and all experiments are repeated 10 times.
Some cropped images from three databases are shown in the
left part of Fig.1.

4.1. Experiments on Appearance

We validate the performance of SLC for face recognition with
variations such as posture and expression changes but with-
out illumination and corruption changes. Thus, we carry out
this experiment on the CMU Multi-PIE face database and ran-
domly choose 3-6 images per individual as the training set
and the remaining images are for the testing set. The aver-
age recognition rates and the standard deviations are shown
in Table 1. Obviously, SLC consistently outperforms LR, LR-
SI, SRC, RSC and RADL. Because the low-rank component
from the training dataset constructs the dictionary in SLC and
it contains important facial feature. Accordingly, this experi-
ment shows that SLC’s performance is better than that of the
others.
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We validate the performance of SLC for face recognition with
variations such as posture and expression changes but with-
out illumination and corruption changes. Thus, we carry out
this experiment on the CMU Multi-PIE face database and ran-
domly choose 3-6 images per individual as the training set
and the remaining images are for the testing set. The aver-
age recognition rates and the standard deviations are shown
in Table 1. Obviously, SLC consistently outperforms LR, LR-
SI, SRC, RSC and RADL. Because the low-rank component
from the training dataset constructs the dictionary in SLC and
it contains important facial feature. Accordingly, this experi-
ment shows that SLC’s performance is better than that of the
others.

4.2. Experiments on Illumination Change

Illumination has important influence on face recognition. In
the first test, we carry out this experiment on the Extended
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Fig. 2. Experimental results on corrupted training images.

5% 10% 15% 20% 25% 30%

(a)

(b)

(c)

Fig. 1. Some cropped images and some training samples cor-
rupted by salt-and-pepper noise from the (a) CMU Multi-PIE,
(b) Extended Yale B and (c) CAS-PEAL database.

Yale B face database. We randomly select 3 - 6 images per
individual as the training set and the rest images as the testing
set. The average recognition rates and the standard deviations
are shown in Table 2. Thanks to its low-rank dictionry, the
result of SLC is more approximate to the practical result than
that of the other methods. It shows that SLC is better than the
other methods for face recognition with illumination, when
the number of training images is more than 4.

In the second test, we utilize 178 subjects from the Light-
ing category of CAS-PEAL database. Each subject has 9 im-
age and is captured under 9 kinds of variations in illumina-
tion. We randomly select 3 - 6 images per individual on the
CAS-PEAL database as the training set and the rest images as
the testing images. The averaged recognition rates and stan-
dard deviations are showed in Table 3. We can see the max-
imum accuracy of the proposed SLC (78.37%) over RADL
(68.19%) reaches about 10.18% at 3 training samples. Gen-
erally speaking, SLC achieves better than other methods for
face recognition with illumination.

4.3. Experiments on Corruption Change

Face recognition for images corrupted by tense noise is a chal-
lenge task. In the experiments, to test the corruption robust-

ness of the proposed method, we use the CMU Multi-PIE,
Extended Yale B and CAS-PEAL databases and all training
samples are corrupted by different level noise. In the right
part of Fig.1, from top to bottom, training images are from the
CMU Multi-PIE, Extended Yale B and CAS-PEAL databases
respectively, and from left to right, training images are cor-
rupted by salt-and-pepper noise from 5% to 30%, respective-
ly. Considering different databases having different number
samples, we randomly choose 20 and 30 images per individu-
al from the Extended Yale B database, 5 and 6 images per in-
dividual from the CMU Multi-PIE and CAS-PEAL databases
as the training set and the rest as the testing set, respectively.
Fig.2 plots the average results of different training set. From
Fig.2, it is noteworthy that SLC consistently has better perfor-
mance than the others. Because of the low-rank component
from the training images, the dictionary contains more feature
information instead of the other information associated noise.
Hence, the superiority of SLC is obvious with the gradually
increase of salt-and-pepper noise. It shows that SLC has a
good performance for face recognition with corruption.

5. CONCLUSION

We proposed a sparse low-rank component coding (SLC) for
face recognition with illumination and corruption. In this
method, we employed LR on the training dataset to construc-
t dictionary. And they represented the effective feature and
the information with sparse error respectively. We obtained
the solution of the proposed SLC and minimized class-wise
reconstruction residual to recognize the testing image. In
this way, SLC achieved better classification performance and
overcame the problem of training dataset with illumination
and corruption. The experiments demonstrated that the pro-
posed SLC method outperforms the other SRC based methods
for face recognition with illumination and corruption.
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