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ABSTRACT

Deep supervised hashing methods for multi-label image re-
trieval have achieved great success nowadays. However, these
methods only take the similarity between the database images
and the query images into account, but they ignore the unique-
ness of the database images when deciding on their rankings.
Here we present a novel Deep Uniqueness-Aware Hashing
(DUAH) method for learning hash functions that preserve not
only multilevel semantic similarity between multi-label im-
ages, but also the unique semantic structure of each image.
In our approach, both the pairwise label information and the
classification information are fully exploited to maximize the
discriminability of the output binary codes within one stream
framework. Extensive evaluations conducted on three widely
used multi-label image benchmarks demonstrate that DUAH
can support fine-grained multi-label image retrieval better.

Index Terms— Deep Learning, Fine-Grained Multi-
Label Image Retrieval

1. INTRODUCTION

With the explosive growth of images on the web, much atten-
tion has been paid to the nearest neighbor search via hashing
methods. Deep supervised hashing methods try to perform si-
multaneous feature learning and hash-code learning with deep
neural networks, which have shown much better performance
than traditional hashing methods with hand-crafted features.
However, most of the deep hashing methods aim at pre-
serving binary semantic similarity (i.e. similar or dissimilar)
[1,2,3,4,5,6,7, 8], and they are not scalable in multi-label
image retrieval [9, 10], which can be observed in our exper-
imental results. Recently, several deep supervised hashing
methods [9, 10] for multi-label image retrieval are proposed.
More specifically, DSRH in [9] tries to decode the multi-
level semantic similarity information with a ranking list, and
DMSSPH in [10] is the first pairwise label based deep super-
vised hashing method for multi-label image retrieval. How-
ever, all the previous deep supervised hashing methods for
multi-label image retrieval only take the similarity between
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Fig. 1. Three exemplary images. Both images in (a) and
(b) are associated with four labels: “sky”, “sunset”, “beach”
and “sea”. The image in (c) is labeled with “sky”, “sunset”,

“beach”, “sea” and “pavilion”.

the database images and the query images into account, but
they ignore the uniqueness of the database images when de-
ciding on their rankings. The three images in Fig. 1 are all
associated with “sky”, “sunset”, “beach” and “sea”, while the
image in (c) is further relevant to “pavilion”. For the previ-
ous deep hashing methods, the two images in (b) and (c) are
considered at the same similarity level when the image in (a)
is the query image. However, due to the uniqueness of the
image in (c), the image in (a) should be more similar to the
image in (b) than to the image in (c). For fine-grained multi-
label image retrieval, both the multilevel semantic similarity
and the uniqueness of the database images should be taken
into consideration when deciding on their rankings.

To support fine-grained multi-label image retrieval, we in-
troduce a novel framework, named Deep Uniqueness-Aware
Hashing (DUAH). The overview of the proposed framework
is presented in Fig. 2. We use a CNN model [11] to learn hash
functions directly from images. Meanwhile, a fine-grained
multilevel contrastive loss function is elaborately designed
to maximize the discriminability of the learned binary codes.
To discover the minor semantic differences between the im-
ages like Fig. la and Fig. Ic, we add a multi-label clas-
sification layer fcc directly after the hash layer fch, aiming
at making the learned hash codes ideal for multi-label clas-
sification. In general, the contributions of this study can be
summarized as follows: 1) We present a novel CNN based
framework, named DUAH, for learning hash functions that
preserve not only multilevel semantic similarity between im-
ages, but also the unique semantic structure of each image. 2)
We propose a fine-grained multilevel contrastive loss function
to optimize our architecture, which can make the learned hash
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Fig. 2. Overview of the proposed framework. The input to the proposed framework is in the form of two-tuples, i.e., extremely
similar images, very similar images, normally similar images and dissimilar images. Through the proposed architecture, the
image tuples are first encoded into a pairwise of image feature vectors by five convolution layers and two fully connected layers.
Then each image vector in the two-tuple is converted to a hash code by a hash layer fch. Note that the hash layer fch is simply
a fully connected layer without any activation functions. After that, these hash codes are used in a fine-grained multilevel
contrastive loss that aims to preserve fine-grained multilevel similarities on images. Besides, a multi-label classification layer
fec is directly connected with the layer fch, which aims at making the learned hash codes ideal for multi-label classification.

codes more discriminating. 3) A multi-label classification
loss function is proposed to learn hash codes together with the
fine-grained multilevel contrastive loss function within one
stream framework, which can preserve the semantic struc-
ture and the uniqueness of images. 4) Extensive experiments
on three widely used multi-label datasets demonstrate the ad-
vantages of DUAH over several state-of-the-art hashing tech-
niques.

2. THE PROPOSED APPROACH

Assume we are given a data set D = {z,})_; where
each data z € RM is associated with a set of class labels
I C L, we aim to learn a set of hash functions h(z) =
[h1 (z),ha(x),...,hx ()] which generate k-bits binary
codes (k <« M).

2.1. Fine-Grained Multilevel Contrastive Loss

To preserve fine-grained multilevel semantic similarity be-
tween images, we further subdivide very similar images into
extremely similar images and very similar images. For a pair
of images I and I5 and their associated class label sets [; and
la, we define ny = |l1|, no = |l Nl2| and ng = |l2|. The
similarity degrees can be further divided into:

ifni =ng =n3
ifny =ng #n3
ifny >mn2 >0
ifneg =0

0 (extremely similar),
1 (very similar),
(very ) o

2 (normally similar),

3 (dissimilar),

Then the fine-grained multilevel contrastive loss function is
defined as:
Ny 1
£r0 = 3 e mx (Dir (b152),h(1:2) = o1,0) +

=1

1
5 Tyi=1max (m1 — Dy (h(1;,1), h(L;,2)) ,0) +

1
5 Tyi=2 max (m2(ni,1 —ni2)/min — Da (h(1,1), h(1;,2)) ,0) +

1
5 1vi=3 max (m2 — Dy (h(1;,1), h(1;,2)) , 0)

st h(Li;) e {+1,—-1}* je {1,2}
(2)

where Dy (-,-) denotes the Hamming distance between
two binary vectors, IV; is the number of the training pairs
randomly selected from training images, and mq,mgy > 0
are two margin threshold parameters. The indicator function
Ieondgition = 1 if condition is true; otherwise I.ondition = 0.

Different from the multilevel contrastive loss function, we
don’t further penalize extremely similar images if the Ham-
ming distance between their binary codes falls below m;. In
fact, the indefinite contraction of extremely similar images is
a damaging behaviour [12]. Besides, to distinguish very sim-
ilar images from extremely similar images, we punish very
similar images if the Hamming distance between their hash
codes falls below m1. We punish normally similar or dissimi-
lar images mapped to close binary codes when their Hamming
distance falls below a certain margin threshold determined by
their similarity degrees.

However, it is hard to minimize £, because it is a dis-
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crete optimization. We adopt the relexation method proposed
in [1, 10], and Ly, can be transformed to:

1
Lra =3 [y Tumomax (IF(Ts) = F(Tu2)| = m1,0) +
i=1
1

Method DUAH ~ DMSSPH + DSRH ~ DSH ITQ ~ SH
0z

NDCG@m
NDCG@m
NDCG@m

§Iyi:1 max (ml —If(Ts,1)

§Iyi:2 max (mg(ni’l

1

— f(Zi,2)113,0) +
—ni2)/ni —||f(Li1)

— f(Zi,2)!13,0) +
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§Iyi:3 max (ma — || f(Li,1) — f(Li,2)]13,0) +

a([[1f (L) =l + [ (Li2)] = 1)
(3)

where f(1; ;) is the continuous output vector of the layer
fch, 1 is a vector of all ones, || - |1 is the L1-norm of vector,
| - | is the element-wise absolute value operation, and « is a
weight parameter that controls the strength of the regularizer.
To generate binary codes, we set h(1;) = sgn(f(I;)).

2.2. Multi-Label Classification Loss

Observing that the semantic structure of images can reflect
their uniqueness, we propose a multi-label classification loss
function to learn the hash codes together with the fine-grained
multilevel contrastive loss function within one stream frame-
work. Unlike the two stream framework proposed in [2], the
multi-label classification loss function in our framework has
a direct impact on the hash functions, because the layer fcc is
directly connected with the layer fch. The multi-label classi-
fication loss function can be computed by:

No ¢
tne=- 3 [1

i=1j=1

yimt log(pj) I;;:olog(l—p;?) @

in which y* € {0, 1}€ is a binary label vector, c is the number
of classes, c; is the number of labels the image I; is associ-

ated with, [V, is the number of training images, and pz» is the
predict probability defined as:
, WU
S — 5
Pi S Wi ) ®

where W € R¥*¢ denotes the weight matrix of the layer fcc.

2.3. Learning

We use back-propagation algorithm with mini-batch gradient
descent method to train the network. Our goal is to minimize
L = L¢g+ L. The gradient of L, is:

OLme ; 1 p; .
— =171, ((1=98)p: - — I, _(2-S _)p*
df]’“ yj_l(( )p] ci)+ yj_o( + 1—p} )p]

(©)
where fl = WT f(I;) is the j-th output of the layer fcc, and
S'is computed by

AT .
= y—[)l_p] @)
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Fig. 3. NDCG and ACG curves with 64 bits w.r.t different
number of top returned images.

The subgradients of the first four items and the regularizer
part of L, are respectively written as:

68?23.1 = (=07 (fix = fi2) Ty moreseli ey —fi a3 ma
a;}ff =(= 1) (fin = fin)Iyiil&&\lfi,1*fi,2|\§<m1
%ﬁcgj = (=1) (fi1— fi72)Iyi:Q&&‘|fi,1_fi‘2|‘§<m2(ni'ii;:i’2)
%ETZL = (=1 (fix = fi2) Iy, —ssell i fi 2 3<rms
OLyg (;éyzzamzer — a8 (fi) .
where

8(z) = {(1) ;tlllelrgwia;aS rore = ©

is applied element-wisely, and f; ; denotes f(I; ;). With the
computed gradients (subgradients) over mini-batches, the rest
of the back-propagation can be done in standard manner.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics

We test the proposed hashing method on three multi-label
benchmark datasets, i.e., VOC2012 [13], MIRFLICKR-25K
[14] and NUS-WIDE [15]. VOC2012 consists of 22,531
multi-label images in 20 classes. MIRFLICKER-25K con-
sists of 25,000 multi-label images in 38 classes. NUS-WIDE
contains 269,648 images collected from Flickr, and we follow
the settings in [3, 16, 17] to use the subset of 195,834 images
that are associated with the 21 most frequent concepts, where
each concept consists of at least 5,000 images.
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Table 1. Comparison of NDCG@ 1000, ACG@ 1000 and weighted mAP w.r.t. different number of bits on three datasets. Note
that the weighted mAP performance is calculated on the top 5,000 returned images for MIRFLICKR-25K and NUS-WIDE.

Methods . YOCZO] 2 . . . MIRELICKR—2§K ‘ . N.US—WIDE. .
24 bits 32 bits 48 bits 64 bits | 24 bits 32 bits 48 bits 64 bits | 24 bits 32 bits 48 bits 64 bits
NDCG@ 1000
DUAH 0.7375 0.7320 0.7547 0.7561 | 0.5524 0.5819 0.6020 0.6081 | 0.4612 0.4638 0.4788 0.4838
DMSSPH 0.6662 0.6738 0.7012 0.7064 | 0.4975 0.5113 0.5208 0.5301 | 0.4127 0.4189 0.4238  0.4306
DSRH 0.5670 0.5893 0.6110 0.6164 | 0.4797 0.4959 0.5046 0.5079 | 0.3696 0.3931 0.4043 0.4131
DSH 0.5720 0.5590 0.5889  0.5824 | 0.2845 0.2843 0.2720 0.2915 | 0.3186 0.3240 0.3217  0.3208
ITQ+CNN 0.1411  0.1675 0.1438 0.1475 | 0.1987 0.2001 0.1888 0.1883 | 0.1512 0.1629 0.1667 0.1659
SH+CNN 0.1555 0.1689 0.1665 0.1421 | 0.1842 0.2298 0.1762 0.1812 | 0.1359 0.1175 0.1413 0.1161
ACG@1000
DUAH 0.4364 0.4339 0.4429 0.4446 | 0.3992 0.4207 0.4339 0.4381 | 0.4122 0.4136 0.4253 0.4292
DMSSPH 0.4002 0.4075 0.4193 0.4218 | 0.3640 03756 0.3812 0.3879 | 0.3740 0.3791 0.3840 0.3892
DSRH 0.3494  0.3618 0.3706 0.3714 | 0.3547 03630 0.3680 0.3692 | 0.3395 0.3587 0.3680 0.3751
DSH 0.3483 0.3386  0.3550 0.3488 | 0.2154 0.2161 0.2083 0.2213 | 0.2961 0.3005 0.2989  0.2980
ITQ+CNN 0.0956 0.1145 0.0948 0.1001 | 0.1489 0.1485 0.1418 0.1431 | 0.1352 0.1453 0.1504 0.1492
SH+CNN 0.1088 0.1104 0.1092 0.0937 | 0.1405 0.1738 0.1333  0.1365 | 0.1232 0.1063  0.1275 0.1055
weighted mAP
DUAH 0.5593 0.5573 0.5818 0.5868 | 0.3585 0.3791 0.3900 0.3935 | 0.4020 0.4025 0.4127 0.4165
DMSSPH 0.4933  0.4953 0.5250 0.5307 | 0.3349 0.3441 0.3492 0.3550 | 0.3661 0.3711 0.3760 0.3815
DSRH 0.3936 04113 0.4302 04365 | 03312 03363 0.3402 0.3410 | 0.3355 0.3551 0.3639 0.3708
DSH 0.4372 0.4246 04560 0.4542 | 0.2154 0.2158 0.2076  0.2207 | 0.2962 0.3006 0.2987  0.2983
ITQ+CNN 0.1104 0.1177 0.1008 0.1034 | 0.1497 0.1485 0.1430 0.1441 | 0.1346  0.1442 0.1502 0.1472
SH+CNN 0.1115 0.1149 0.1136  0.0983 | 0.1424 0.1700 0.1359  0.1387 | 0.1235 0.1079 0.1271 0.1071

For VOC2012 and MIRFLICKER-25K, 2000 images are
randomly selected as testing queries and the remaining im-
ages are used as the database for training and retrieval. For
NUS-WIDE, we randomly select 2,100 images (100 images
per class) for testing queries and the rest is used for training
and retrieval. We resize all images into 256 x 256.

Following the previous works [9, 10], the evaluation met-
rics are NDCG, ACG and weighted mAP. Note that we use
the Jaccard coefficient based similarity measurement (s; ; =
;LDEJ) proposed in [5, 10] to measure the fine-grained multi-
level semantic similarity between the two images I; and I;,
which takes both the number of common labels and that of

unique labels into account.

3.2. Method Comparison

Comparative methods: We compare our method with SH
[18], ITQ [19], DSH [1], DSRH [9] and DMSSPH [10].
DMSSPH and DSRH are two state-of-the-art deep super-
vised hashing methods for multi-label image retrieval. DSH
is one of the state-of-the-art deep supervised hashing meth-
ods for single label image retrieval. ITQ and SH are two
representative data-dependent hashing methods. Our method
is implemented with Caffe [20]. Following [10], we set
my = (Lﬁj + 1) x 4nq and a = 0.01. For m;, we
empirically set it to 4.

The comparison results are shown in Table 1 and Fig.
3. The weighted mAP results of DUAH indicate a relative
increase of 10.8% ~ 13.4% /7.0% ~ 11.7% / 8.3% ~ 9.8%
over the second best baseline on VOC2012 / MIRFLICKER-

25K / NUS-WIDE, respectively. The NDCG@ 1000 values
of DUAH indicate a 7.0% ~ 10.7% / 11.0% ~ 15.6%
/ 10.7% ~ 13.0% relative increase over the second best
baseline on VOC2012 / MIRFLICKER-25K / NUS-WIDE,
respectively. The ACG@ 1000 values indicate a 5.4% ~ 9.0%
197% ~ 13.8% / 91% ~ 10.8% relative increase on
VOC2012 / MIRFLICKER-25K / NUS-WIDE, respectively.
Besides, with the decreasing number of top returned images,
DUAH keeps obvious advantages in terms of NDCG and
ACG, as shown in Fig. 3. Note that DUAH, DMSSPH and
DSRH perform much better than DSH in most cases, indi-
cating that the methods aiming at preserving binary semantic
similarity can not well apply to multi-label image retrieval.

4. CONCLUSION

In this paper, we have proposed a CNN-based hashing method
for fine-grained multi-label image retrieval, called DUAH.
DUAH takes into account both the multilevel semantic simiar-
ity and the uniqueness of the database images when deciding
on their rankings. We carefully design a fine-grained mul-
tilevel contrastive loss function which pays particular atten-
tion to the uniqueness of the images that are very similar to
the query image, aiming at improving the accuracies of top
returned images. To preserve the unique semantic structure
of each image, we propose a multi-label classification loss
function to learn the hash codes together with the fine-grained
multilevel contrastive loss within one stream framework. Ex-
tensive experiments demonstrate that DUAH performs much
better in fine-grained multi-label image retrieval.
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