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ABSTRACT

Hashing-based methods have made great advancements
in cross-modal retrieval in both computational efficiency and
storage. Learning a common space from different modalities
is the common strategy of hashing-based methods, however,
relational and structural information between samples in each
modality, namely, a modality-specific structure, is always dis-
carded during learning. In addition, cross-modality samples
sometimes suffer from inter-class ambiguity and intra-class
variability because of the uncertainty of manual labeling. To
address these issues, we propose a novel method named
Modality-specific structure Preserving Hashing (MsPH),
which learns hashes by preserving the local structure and
relations between samples in each modality. Moreover, label
enhancement is utilized in MsPH to address label ambiguity
and variability. Extensive experiments conducted on three
benchmark datasets demonstrate the superiority of MsPH
under various cross-modal scenarios.

Index Terms— Cross-modal retrieval, Hashing, Modality-
specific structure preserving, Label enhancement

1. INTRODUCTION

With the rapid development of the internet, a vast amount of
media data such as text, image, and video have been cap-
tured and shared on social media sites such as Flickr and
Facebook. When users query topics with texts, they often
expect relevant images or videos with similar semantics to be
returned; this necessitates the development of cross-modal re-
trieval technologies to meet latent commercial needs. Cross-
modal retrieval aims to retrieve information from different
modalities such as images, text, or videos and has become
a hot topic in the field of multimedia retrieval. In general,
an advantageous solution to cross-modal retrieval is hashing-
based methods, which compress high-dimensional data into
compact binary codes with similar binary codes for similar
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objects. Hashing-based methods provide both computational
efficiency and search quality.

Many cross-modal hashing methods have been pro-
posed in recent years. Unsupervised [1] [2] [3] and su-
pervised [4] [5] [6] [7] methods are two main categories.
Unsupervised hashing methods generally aim to learn pro-
jections from features to hash codes by exploiting their intra-
and inter-view relationships of training data. Song et al. [1]
propose a novel inter-media hashing model to derive effective
hash codes by exploring inter- and intra-media consistencies.
Zhou et al. [2] propose latent semantic sparse hashing to
perform a cross-modal similarity search using sparse coding
and matrix factorization to obtain latent semantics. Ding et
al. [3] learn unified hash codes by collective matrix factor-
ization with a latent factor model from different modalities
of one instance. Supervised hashing-based methods leverage
available class label information of training data as supervi-
sion to facilitate hash code learning. Zhang et al. [4] utilize
label vectors to obtain semantic similarity matrices and at-
tempted to reconstruct them through learned hash codes. Lin
et al. [5] transform given semantic affinities of training data
into a probability distribution and approximated them with
to-be-learned hash codes in Hamming space.

In general, most existing methods attempt to effectively
reflect the corresponding relation of different modalities with
semantic meanings or label information during hash learn-
ing. However, local structure and relation information in each
modality, namely, a modality-specific structure, is always dis-
carded when learning a common space for different modali-
ties. Different modalities lie on different manifolds, and the
modality-specific structure obviously benefits the process of
hashing learning. Therefore, it is important to preserve the
modality-specific structure in the final hash representation.
However, few researchers have taken this into consideration.
In addition, because samples from different modalities always
share identical and abstract labels that are manually labeled,
which is imprecise and subject to error, cross-modality data
often suffer from inter-class ambiguity and intra-class vari-
ability.
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To address these issues, we propose a novel hashing-based
method for cross-modality retrieval named Modality-specific
structure Preserving Hashing (MsPH), which not only deter-
mines a common space for different modalities, but also pre-
serves the local manifold structure of each modality. We uti-
lize a label enhancement strategy to release the inter-class am-
biguity and intra-class variability during the retrieval process.
The main contributions of this work are two-fold:

• Modality-specific structure preservation. The local
structures and relations between different samples in
each modality are preserved and considered in hash
learning to protect every modality distribution or geo-
metrical structure.

• Label enhancement. Label enhancement is considered
during cross-modal retrieval, which not only releases
the inter-class ambiguity and intra-class variability, but
also satisfies user-central and content-central retrieval.

2. THE PROPOSED METHOD

This section details the proposed hashing method for cross-
modal retrieval. For simplicity, and without loss of general-
ity, we only discuss the case of two modalities, i.e., image
and text. Cases that consider more modalities can easily be
extended using the proposed method.

The framework of MsPH is illustrated in Fig. 1. MsPH at-
tempts to learn the hash representation from different modali-
ties by considering the local structure and relation of samples
in each modality. It then retrieves relevant samples based on
hashes and label enhancement. In this section, we describe
hash learning and the label enhancement-based retrieval pro-
cess.

2.1. Hash Learning

Assume that we have a training set X consisting of n in-
stances, i.e., X = {xi}ni=1 with xi being the ith instance.
For each instance, xi = (ai,bi), where ai ∈ Rf is the im-
age and bi ∈ Rd is the text feature vectors, respectively.
Moreover, label matrix Y = {yi}ni=1 is also available with
yi = {yij} ∈ Rc being the label vector of the ith instance,
where c is the total number of categories, and yim = 1 if xi

belongs to class m, m = 1, · · · , c and 0 otherwise. We also
define A ∈ Rf×n and B ∈ Rd×n as the image and text fea-
ture matrixcs, respectively. Then, the goal of MsPH is to learn
hash matrix H for training instances.

2.1.1. Formulation

The goal of hash learning is to obtain a common hash repre-
sentation shared by different modalities. First, we define U1

and U2 as transformation matrices that map the image and
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Fig. 1. The framework of the modality-specific structure pre-
serving hashing(MsPH).

text features to the hashing space, respectively. In order to ef-
fectively utilize label information, transformation matrix M
is utilized to map hash matrix H to its label space. To learn
hash codes from different modalities, minimizing the errors
of both the projection and classification procedures is a rea-
sonable criterion that can be applied; this can be formulated
as the following minimization problem:

min
M,H,U1,U2

∥∥Y −MTH
∥∥2 + u1

∥∥H−UT
1 A
∥∥2

+ u2
∥∥H−UT

2 B
∥∥2 + λ ‖M‖2 ,

s.t. H ∈ {−1, 1}K×n ,

(1)

where u1 and u2 are penalty parameters, λ is a regularization
parameter, ‖·‖ is the `2 norm and K is the length of hash
codes .

Clearly, different modalities always lie on different mani-
folds that describe their modality-specific distributions. How-
ever, when samples in different modalities are projected into a
common Hamming space, the modality-specific distributions
may be discarded. Therefore, to obtain the optimized hash
representation, the local structure in each modality must be
preserved in the common space. To be specific, for S ∈
Rn×n, Si,j = 1 if the ith instance shares at least one label
with the jth instance, and Si,j = 0 otherwise. We then derive
the corresponding normalized Laplacian matrix as follows:

L(S) = I− D−
1
2 S D−

1
2 , (2)

where I ∈ Rn×n is the identity matrix, and D ∈ Rn×n is the
diagonal degree matrix whose (u, u)th entry is the sum of the
uth row of S.

Our goal is to preserve the local structure in each modal-
ity when they are projected onto a common Hamming space.
In this study, we minimize structure regularization items
LPA and LPB for image and text modalities, respectively, to
achieve this purpose. LPA and LPB are defined as follows:

LPA = Tr((UT
1 A)TL(S)(UT

1 A)), (3)

LPB = Tr((UT
2 B)TL(S)(UT

2 B)), (4)
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where Tr(·) is the trace.
Eventually, the objective function for MsPH can be con-

cluded as:

min
M,H,U1,U2

∥∥Y −MTH
∥∥2 + u1

∥∥H−UT
1 A
∥∥2

+ u2
∥∥H−UT

2 B
∥∥2 + α ∗ LPA + β ∗ LPB + λ ‖M‖2 ,

s.t. H ∈ {−1, 1}K×n ,
(5)

where α and β are regularization parameters.

2.1.2. Optimization

It’s challenging to optimize Eq.(5) directly as it is non-
convex. However, it is convex when taking one variable
with the other three variables fixed. Therefore, Eq.(5) can
be solved by an iterative framework with the following steps
until convergence. In the Eq.(5), the variables M, H, U1 and
U2 are the ones we need to optimize, while A, B and Y are
what we know. In addition, the variables M and H depend on
Y, while U1 and U2 depend on H. As far as the optimized
order is concerned, it is better to optimize M and H firstly.
Therefore, Eq.(5) can be solved as three steps.

Step1: Learn M with the other variables fixed. The prob-
lem in Eq.(5) becomes:

min
M

∥∥Y −MTH
∥∥2 + λ ‖M‖2 , (6)

which is a simple regularized least squares problem. The
closed-form solution of M can be derived as:

M = (HHT + λ)−1 ∗ (HTY). (7)

Step2: Learn the binary code in common space H with
the other variables fixed. The problem in Eq.(5) becomes:

min
H

∥∥Y −MTH
∥∥2 + u1

∥∥H−UT
1 A
∥∥

+ u2
∥∥H−UT

2 B
∥∥2 , s.t. H ∈ {−1, 1}K×n .

(8)

We rewrite Eq.(8) as:

min
H

∥∥MTH
∥∥2 − Tr(HTW), s.t. H ∈ {−1, 1}K×n ,

(9)
where W = MY + u1U

T
1 A + u2U

T
2 B, and Tr(·) is the

trace.
Although Eq.(9) is a NP hard problem as H is discrete,

we can directly leverage the discrete cyclic coordinate descent
(DCC) approach proposed in [11] to learn H bit-by-bit iter-
atively. Specifically, define hT as the kth row of matrix H,
k = 1, · · · ,K and H

′
as the matrix H excluding h. Homo-

plastically, define vT as the kth row of matrix M and M
′

as
the matrix M excluding v. Besides, define wT as the kth row
of matrix W. Then optimal solution of can be achieved as:

h = sgn(w −H′TM′v). (10)

DCC can get optimal solution of the binary code of H bit-
by-bit, by which every bit of the H has be computed depends
on the K − 1 learned bits. After K iterations, the matrix H
is supposed to be optimal for Eq.(8).

Step3: Respectively learn the projection matrices U1 and
U2 with other variables fixed. The problem in Eq.(5) be-
comes:

min
U1

α ∗ LPA + u1
∥∥H−UT

1 A
∥∥2 , (11)

min
U2

β ∗ LPB + u2
∥∥H−UT

2 B
∥∥2 . (12)

The two matrices can be computed by partial derivative as:

U1 = (α ∗ATL(S)TA+AAT )−1(AHT ), (13)

U2 = (β ∗BTL(S)TB+BBT )−1(BHT ). (14)

In short, Eq.(5) can be solved iteratively by above three
steps. The convergence is supposed to be reached in three to
five times of iteration.

2.2. Label Enhancement-based Retrieval

In reality, multiple modality samples are manually labeled
with brief labels. Sometimes samples from different classes
likely share similar content, while samples belonging to the
same class differ heavily in content. So these labels are not
accurate. For example, all kinds of animals belong to the
class biology, while photos of humans may belong to history,
sports, music, or media. To tackle this problem, label en-
hancement is utilized in this study. Label enhancement [12]
describes every sample using the probability of assigning the
sample to different labels.

In this study, we utilize transformation matrix M to
achieve label enhancement. As discussed above, matrix M
is obtained by MsPH and utilized to project the common
hash representation to the label space. Based on M, a label
vector ŷ that is called the label distribution for a sample can
be obtained, where the kth element represents the probability
of assigning the sample to the kth label. Compared to ex-
isting methods that only use an identical label for a sample,
label enhancement can release the inter-class ambiguity and
intra-class variability.

During retrieval, we consider both the label distribution
and hash representation. Unlike existing methods, we not
only utilize the hash distance in the common space to decide
whether a retrieved sample is relevant, but we also consider
the similarity of label distribution. In general, two strategies
are adopted: 1) discarding samples whose labels are very dif-
ferent from the query’s label after sorting the retrieved sam-
ples by hash distance, and 2) establishing a simple weighting
on the hash distance of contents and the similarity of label
distributions.
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Table 1. Overall comparison of mAP values on the three datasets. The top panel is the performance
for Img2Text task and the bottom panel is for Text2Img task.

Method
Wiki MIR-flickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CMSSH [8] 0.1976 0.1999 0.1889 0.1907 0.5520 0.5539 0.5506 0.5559 0.4686 0.4768 0.4741 0.4637
IMH [1] 0.1869 0.1938 0.1873 0.1834 0.6088 0.6063 0.5977 0.5857 0.4543 0.4469 0.4371 0.4285

LSSH [2] 0.2141 0.2216 0.2218 0.2211 0.5784 0.5804 0.5797 0.5816 0.3900 0.3924 0.3962 0.3966
CMFH [3] 0.2132 0.2259 0.2362 0.2419 0.6273 0.6343 0.6410 0.6451 0.4267 0.4229 0.4207 0.4182
CRH [9] 0.2031 0.1966 0.1982 0.1943 0.5826 0.5745 0.5726 0.5718 0.5136 0.5079 0.4996 0.5013

DCH [10] 0.2578 0.2791 0.2926 0.2661 0.5268 0.5192 0.5079 0.6797 0.4859 0.5811 0.5403 0.5571
MsPH 0.2771 0.2955 0.2980 0.2896 0.6960 0.7216 0.7370 0.7456 0.5722 0.6047 0.5588 0.5717

CMSSH [8] 0.2495 0.2360 0.2348 0.2382 0.6010 0.6048 0.6029 0.6041 0.4635 0.4685 0.4594 0.4556
IMH [1] 0.3731 0.3967 0.3720 0.3519 0.5996 0.5999 0.5914 0.5824 0.4546 0.4497 0.4415 0.4304

LSSH [2] 0.5031 0.5224 0.5293 0.5346 0.5898 0.5927 0.5932 0.5932 0.4286 0.4248 0.4248 0.4175
CMFH [3] 0.4884 0.5132 0.5269 0.5375 0.6095 0.6134 0.6184 0.6199 0.4627 0.4556 0.4518 0.4478
CRH [9] 0.2634 0.2622 0.2631 0.2625 0.5944 0.5913 0.5838 0.5811 0.5273 0.5114 0.5033 0.4977

DCH [10] 0.3801 0.4237 0.4431 0.4049 0.6109 0.6407 0.6221 0.6576 0.5984 0.5993 0.5852 0.6103
MsPH 0.4563 0.4670 0.4724 0.4709 0.7296 0.7355 0.7354 0.7613 0.6142 0.6403 0.6256 0.6117

3. EXPERIMENT

3.1. Experimental Settings

To confirm the superiority of our method, we conduct suf-
ficient experiments on three benchmark datasets, Wiki [13],
MIR-flickr [14], and NUS-WIDE [15]. All of these datasets
consist of pairwise parts, images, and texts. Two types of
cross-modal retrieval tasks are conducted on the three bench-
mark datasets: 1) Img2Text: using images to query related
texts, and 2) Text2Img: using texts to query related images.

We compare the proposed MsPH with state-of-the-art
hashing based cross-modal retrieval methods such as Cross-
modal Similarity Sensitive Hashing (CMSSH) [8], Inter-
media Hashing (IMH) [1], Latent Semantic Sparse Hash-
ing (LSSH) [2], Collective Matrix Factorization Hashing
(CMFH) [3], Co-Regularized Hashing (CRH) [9], and Dis-
crete Cross-modal Hashing (DCH) [10]. We adopt the mean
average precision (mAP) to evaluate the performance of these
methods on the three public datasets.

To verify the stability of MsPH, we perform five runs
for our methods and average their performance for compar-
ison. For the experimental parameters, we empirically set
λ = 10−2, α = 0.4, β = 0.5, and u1 = u2 = 10−6. During
the retrieval, we empirically set the weights of hash distance
and label similarity to 0.8 and 0.2, respectively. All experi-
ments are conducted on a computer with an Intel Core i7-6700
3.40 GHz 4 processor and 16 GB RAM. The operating sys-
tem is 64-bit Windows 10, and the programming environment
is MATLAB R2015b.

3.2. Experimental Results and Analysis

Table 1 shows the mAP of each method with the hash length
ranging from 16 to 128 bits using the same experimental set-
tings defined in [10]. In the Wiki dataset, note that the mAP
of MsPH is slightly higher than those of the other methods

in the Img2Text task; similar performance can be observed
in the Text2Img task. This is not immediately obvious be-
cause of the small size of this dataset. In contrast, on larger
datasets MIR-flickr and NUS-WIDE, the advantage of the
proposed MsPH is clearly evident. Particularly, in the MIR-
flickr dataset, the mAP performance of MsPH achieved more
than 10% improvement compared to the other methods both
in the Img2Text and Text2Img tasks.

4. CONCLUSION

In this paper, we propose a supervised hashing method
for cross-modal retrieval called MsPH, which focuses on
modality-specific structure preservation and label enhance-
ment during hashing learning and retrieval. In the proposed
method, we consider a modality-specific structure regulariza-
tion item while learning the common hashing space, making
it more suitable for precise retrieval and cross-modal re-
trieval. Furthermore, we utilize label enhancement to release
the inter-class ambiguity and intra-class variability in cross-
modal samples. The experimental results conducted on three
benchmark datasets confirm the superiority of our method.
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