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ABSTRACT

In this paper, we propose a novel unsupervised hashing
method called Anchor-based Probability Hashing (APHash)
to preserve the similarities by exploiting the distribution of
data points. In particular, distances are transformed into
probabilities in both original and hash code spaces. Our
method aims to learn hash codes which minimize the mis-
match between probability distributions of these two spaces.
To address the high complexity issue, our method randomly
selects a set of anchors and constructs asymmetric proba-
bility matrices. In this way, APHash can make use of the
correlation between anchors and data points to learn hash
codes more efficiently. Experimental results on two bench-
mark datasets demonstrate the effectiveness of the proposed
APHash method, outperforming state-of-the-art hashing ap-
proaches in the application of image retrieval.

Index Terms— Hashing, Image Retrieval, Unsupervised
Learning

1. INTRODUCTION

With the availability of large volumes of high-dimensional
image data, large-scale visual search has attracted extensive
research attention in computer vision and machine learning
communities [1, 2, 3, 4]. To tackle heavy computational cost
with high-dimensional real-valued descriptors, hashing meth-
ods have been proposed. The target of hashing is to encode
high-dimensional feature vectors into short binary hash codes
while preserving similarities of interest. By using binary hash
codes, significant reduction on both storage and computation
complexity can be achieved.

In this paper, we focus on unsupervised hashing. This
category of methods makes the Hamming distance of learned
hash codes pairs and the corresponding similarity (typically
computed with Euclidean distances) given in the original
space as consistent as possible. Among various unsupervised
hashing methods, graph-based hashing methods are very rep-
resentative, including Spectral Hashing [5], Anchor Graph
Hashing [6], Discrete Graph Hashing [7] and Scalable Graph
Hashing [8]. Typically, the graph-based hashing methods can
be considered as a Laplacian Eigenmap problem. Other ex-
isting methods like Iterative Quantization (ITQ) [9] attempt

to obtain binary hash codes by imposing optimized rotation
on the principal vectors. Ordinal relation is also considered
in the hash code learning process. Ordinal Embedding Hash-
ing (OEH) [10] was proposed to preserve the relative orders
among data points in the Hamming space.

Instead of treating it an Laplacian Eigenmap or ordinal
preserving problem, we propose a novel unsupervised method
to preserve the similarities of the original space in the learned
hash codes by exploiting the distribution of data points, which
we refer as Anchor-based Probability Hashing (APHash). In
the proposed framework, distances between data points in the
original space and the hash code space are transformed into
probability distributions P and Q that represent data similar-
ities. If derived hash codes correctly capture the similarities
of the original data space, the mismatch between P and Q
should be minimized.

However, assume there are n data points, P and Q will
be represented by n × n probability matrices, and the com-
plexity will be O(n2) as in SePH [11]. Thus, it is hard to
employ this configuration for the image retrieval task, as the
number of data points is typically large. To overcome this ob-
stacle, we propose to randomly select a set of m anchors and
construct asymmetric probability matrices of size m × n to
represent the the probability distributions P and Q. In this
way, our APHash method makes use of the correlation be-
tween anchors and data points to learn hash codes more ef-
ficiently. Extensive experiments are conducted on publicly
available CIFAR-10 [12] and Youtube Faces [13] datasets and
the results demonstrate that our proposed APHash method can
achieve superior performance over the state-of-the-art hash-
ing approaches.

2. ANCHOR-BASED PROBABILITY HASHING

2.1. Problem Formulation

Distribution-preserving Loss
To capture the data structure in the original space, we pro-
pose a novel method called Anchor-based Probability Hash-
ing (APHash) which aims to preserve the distribution of data
points. Specifically, Euclidean distances between data points
are transformed into probability distribution P which repre-
sent similarities in the original space. Similarly, Hamming
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distances in the hash code space are transformed into proba-
bility distribution Q. Assume we are given n data points, P
and Q will be represented by probability matrices of n × n.
The data distribution can be preserved by minimizing the mis-
match between P and Q.

However, there is high complexity issue under this con-
figuration, where the complexity grows quadratically with in-
creasing of the number of data points. To address this issue,
we select a set of m anchors C = {ci}mi=1 from the whole
training set containing n data points X = {xi}ni=1 and con-
struct asymmetric probability matrices P and Q of m × n.
Here we randomly select the anchors for simplicity. Note that
m is much smaller than n (i.e. m� n). In this way, APHash
can make use of the correlations between anchors and all the
data points to learn hash codes which preserve the data struc-
ture. In our APHash method, KL-divergence is utilized to
measure the difference between these two probability distri-
butions.

In the original space, to derive the probability distribution
P , we define pj|i as the probability of assigning data point
xj to anchor ci, in other words, pj|i indicates the similarity
between data point xj and anchor ci. pj|i is represented as
follows:

pj|i =

{
1, if d(ci, xj) ≤ θ
0, if d(ci, xj) > θ

(1)

where θ is the threshold indicating the average distance be-
tween anchor ci and its k nearest neighbors:

θ =

∑
j∈Nk(ci) d(ci, xj)

k
(2)

where d(ci, xj) = ‖ci − xj‖22 denotes the Euclidean distance
between anchor ci and data point xj , and Nk(ci) denotes the
set of k nearest neighbors of anchor ci. To some extent, the
threshold θ can help filter out those remote data points within
these k nearest neighbors.We normalize the probabilities such
that the sum of probabilities related to each anchor is 1, that
is
∑n

j=1 pj|i = 1.
Similarly, we define a probability distribution Q in the

hash code space using Hamming distances. Assume r-bit
hash code matrices for the anchor set and the whole training
set are H = {hi}mi=1 ∈ {+1,−1}r×m and B = {bi}ni=1 ∈
{+1,−1}r×n. qj|i denotes the probability of of assigning
data point bj to anchor hi in the hash code space. Inspired by
t-SNE [14], we utilize a Student t-distribution with one de-
gree of freedom to transform Hamming distances into proba-
bilities, as shown in the following formula:

qj|i =
(1 + g(hi,bj))

−1∑n
t=1(1 + g(hi,bt))−1

(3)

where g(hi,bj) denotes the Hamming distance between an-
chor hi and data point bj in the hash code space. Similar with
the setting in the original space, we normalize the probabili-
ties such that

∑n
j=1 qj|i = 1. With hi and bj ∈ {+1,−1}r

for any i and j, the Hamming distance between hash codes of
two instances can be calculated from their squared Euclidean
distance as follows:

g(hi,bj) =
1

4
‖hi − bj‖22 (4)

thus qj|i can be further rewritten as follows:

qj|i =
(1 + 1

4‖hi − bj‖22)−1∑n
t=1(1 +

1
4‖hi − bt‖22)−1)

(5)

The objective of APHash is to learn optimal hash codes
H and B of anchors and all data points that can minimize the
mismatch between probability distributions P and Q. By in-
corporating the correlation between anchors and data points,
the distribution-preserving loss using KL-divergence to learn
hash codes H and B is defined as follows:

J0 =

m∑
i=1

n∑
j=1

pj|ilog
pj|i

qj|i
(6)

where pj|i and qj|i are defined as formula (1) and (5) respec-
tively. Minimizing the cost function J0 means to make the
distributions P and Q as consistent as possible, so that the
data structure in the training set can be well preserved in the
learned hash code H and B.

To make the problem tractable, we follow the previous
work [5, 15] and relax the binary constrained H and B to
be real-valued, which are denoted as Ĥ and B̂. Then, the
formulation of qj|i will become:

qj|i =
(1 + 1

4‖ĥi − b̂j‖22)−1∑n
t=1(1 +

1
4‖ĥi − b̂t‖22)−1)

(7)

Quantization Loss
To minimize the quantization error between real-valued Ĥ
and B̂ and binary H and B, we introduce a regularization
term to force the entries of Ĥ and B̂ to be near to +1 or −1,
which is defined in the following formula:

J1 = Q(Ĥ) +Q(B̂)

=
1

ZH
‖|Ĥ| − 1H‖22 +

1

ZB
‖|B̂| − 1B‖22

(8)

where 1H and 1B are the matrices of the same dimensional-
ities as H and B with all entries being 1. ZH = r ×m and
ZB = r× n are normalizing factors to eliminate the effect of
the training set size and the hash code length. We choose the
L2-norm regularizer for the simplicity of its optimization.

Overall Formulation
We formulate the cost function of our APHash method as:

J = J0 + λJ1

= min
Ĥ,B̂

m∑
i=1

n∑
j=1

pj|ilog
pj|i

qj|i

+ λ(
1

ZH
‖|Ĥ| − 1H‖22 +

1

ZB
‖|B̂| − 1B‖22)

(9)
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Table 1. Mean Average Precision of Hamming Ranking for different numbers of bits on two datasets.

Method CIFAR-10 (mAP) Youtube Faces (mAP)
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

LSH 0.1170 0.1222 0.1428 0.1515 0.1116 0.1586 0.2948 0.4354
SH 0.1295 0.1301 0.1303 0.1317 0.3900 0.5857 0.6652 0.5992

AGH 0.1507 0.1575 0.1483 0.1440 0.4527 0.6362 0.7299 0.6070
DSH 0.1470 0.1580 0.1625 0.1696 0.2754 0.3721 0.5207 0.5424
SpH 0.1465 0.1487 0.1537 0.1617 0.2646 0.3865 0.5030 0.5877
OEH 0.1373 0.1531 0.1572 0.1625 0.2182 0.4774 0.5901 0.6386
ITQ 0.1545 0.1650 0.1733 0.1787 0.4980 0.6709 0.7454 0.7525

APHash 0.1630 0.1698 0.1779 0.1850 0.6160 0.6975 0.7499 0.7690

where λ is a parameter to balance the effects of the distribution-
preserving loss and the quantization loss. The asymmetric
property of APHash provides an opportunity to learn more
informative hash codes. As demonstrated in [16], the asym-
metric structure tends to lead to a better retrieval performance,
especially under the configuration of a short hash code length.

2.2. Optimization

We propose to utilize gradient descent based optimization
technique to solve this unconstrained optimization problem
and learn locally optimal B̂ and Ĥ . We calculate the gra-
dients with respect to B̂ and Ĥ respectively. The derivative
w.r.t. ĥi is as follows:

∂J

∂ĥi

=

n∑
j=1

(1 +
1

4
‖ĥi − b̂j‖22)−1 × (pj|i − qj|i)

×(ĥi − b̂j) +
λ

ZH
(|ĥi − 1|)� sign(ĥi)

(10)

Similarly, the derivative w.r.t b̂j is:

∂J

∂b̂j

= −
n∑

j=1

(1 +
1

4
‖ĥi − b̂j‖22)−1 × (pj|i − qj|i)

×(ĥi − b̂j) +
λ

ZB
(|b̂j − 1|)� sign(b̂j)

(11)

where� denotes entry-wise multiplication, 1 is a column vec-
tor with all entries being 1. The optimization process will be
performed in an alternative way. Stochastic Gradient Descent
is applied to optimize Ĥ with formula (10) while fixing B̂,
and update B̂ with (11) while fixing Ĥ . The corresponding
binary hash code matrices can be derived via the sign func-
tion, i.e. H = sign(Ĥ) and B = sign(B̂).

2.3. Hash Function Learning

We utilize the original data matrix C and the binary matrix H
of the anchors as the guidance to learn the linear hash func-
tions, the objective function is as follows:

L = min
W
‖H −WTC‖22 + α‖W‖22 (12)

where W ∈ Rr×d is the projection matrix to be learned, α
is a hyperparameter to weight the L2 norm imposed on W .
Finally, we obtain the analytical solution of W :

W = (CCT + αId×d)
−1CHT (13)

where Id×d is an identity matrix of dimensions d× d.

3. EXPERIMENT

3.1. Datasets and Experimental Setup

Datasets: We conduct experiments on two publicly available
benchmark datasets: CIFAR-10 [12] and Youtube Faces [13].
The CIFAR-10 dataset consists of 60, 000 color images from
10 classes. Following [10, 15], each image is represented
by a 512-dimensional GIST feature [17]. We randomly se-
lect 1000 images from dataset for query and the rest 59000
images for training and gallery database. This Youtube Faces
dataset consists of face data involved with 1,595 persons.
We first randomly choose 30 individuals, each of which has
at least 1600 images. Each face image is represented by a
1,770-dimensional LBP feature vector [18]. Specifically,
we randomly sample 100 images from each individual to
form query set. We further randomly select 1500 images
from each individual to form a training set of 45, 000 images.
Since two datasets are fully annotated, we evaluate retrieval
performance using the ground-truth semantic labels.
Parameters: For the setting of parameters, we set the number
of nearest neighbors k as 1, 000 for two datasets empirically.
The size of the anchor set is set as 10, 000 in all experiments.
For the hyperparameters α to control the weight of L2 norm
on W and λ to balance the effect of quantization loss, we set
α = 1 and λ = 0.01 respectively. In our experiments, we
observed that the objective typically converges at about 50 it-
erations. Therefore, we set the maximum number of iterations
as 50. The results of the compared methods are obtained with
the codes provided by the authors, and the setting of parame-
ters follows the suggestions in the original papers.
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(a) precision-recall curve @8bit
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(b) precision-recall curve @64bit
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(c) precision curve @8bit

Fig. 1. ANN search performance evaluated with precision-recall curve (@8 bits and @64 bits respectively) and precision curve
w.r.t. top returned samples (@8 bits) on CIFAR-10 Dataset. Best view in color.
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Fig. 2. ANN search performance evaluated with precision-recall curve (@8 bits and @64 bits respectively) and precision curve
w.r.t. top returned samples (@8 bits) on Youtube Faces Dataset. Best view in color.

3.2. Comparison with State-of-the-art Methods

We follow the recently published paper [10] and compare
the proposed APHash with several state-of-the-art methods,
including Locality Sensitive Hashing (LSH) [19], Spectral
Hashing (SH) [5], Density Sensitive Hashing (DSH) [20],
Spherical Hashing (SpH) [21], Anchor Graph Hashing (AGH) [6],
Iterative Quantization (ITQ) [9], and Ordinal Embedding
Hashing (OEH) [10].Following [20, 9], we evaluate APHash
with three criterions: mean average precision (mAP), precision-
recall curve, and precision curve. All the experiment results
reported are the average of performance over 10 runs.

The quantitative results of comparison with seven state-
of-the-art methods listed above are shown in Tab. 1, Fig. 1,
and Fig. 2. For the comparison with mAP criteria, the length
of hash codes varies from 8 bits to 64 bits. From Tab. 1, we
can observe that the proposed APHash consistently outper-
forms all the compared approaches and achieves the state-of-
the-art retrieval performance on both CIFAR-10 and Youtube
Faces datasets. As for the precision-recall curve, we show the
experimental results with short hash codes (8 bits) and long
hash codes (64 bits) on two datasets in Fig. 1(a)(b) and Fig.
2(a)(b). We also show the precision curves to demonstrate the
effectiveness of the APHash on two datasets in Fig. 1(c) and

Fig. 2(c). As we can see, APHash also outperforms state-of-
the-art methods. Experimental results show that APHash can
learn more informative hash codes and more powerful hash
function. Especially, with short hash codes (e.g. 8 bits), the
proposed APHash outperforms the compared methods by a
large margin, which demonstrates that such an asymmetric
structure leads to the accommodation of much more informa-
tion as discussed in Sec. 2.1.

4. CONCLUSION

In this paper, we proposed an unsupervised Anchor-based
Probability Hashing (APHash) method by preserving the
distribution of data points. Our method makes use of the
correlation between anchors and data points to learn infor-
mative hash codes. It transforms the distances between data
points into probability distributions and minimizes the KL-
divergence to preserve the data structure. An alternating
optimization algorithm is proposed to solve the problem.
Experiments conducted on two publicly available datasets
demonstrate that the proposed APHash outperforms the com-
pared approaches and achieves state-of-the-art retrieval per-
formance.
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