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ABSTRACT
Person search is a challenging task that requires to address
pedestrian detection and person re-identification simultaneous-
ly. Though significant progress has been made in detection
and re-identification respectively, the similar appearances of
persons, pedestrian misdetections and false alarms still have
adverse effects on person search. To this end, an improved end-
to-end person search network with multi-loss is proposed to
jointly optimize detection and re-identification. Firstly, a pre-
trained network is designed to obtain proper initial state for the
whole training network. Then, to enhance the person search
model, an improved online instance matching (IOIM) loss is
proposed by hardening the distribution of labeled identities
and softening the distribution of unlabeled identities. Finally,
considering the intra-class compactness of features learned
by center loss, the IOIM loss is combined with center loss by
the proposed multi-loss fusion strategy, which can learn more
discriminative feature embeddings. Experimental results on
two challenging datasets CUHK-SYSU and PRW demonstrate
our approach significantly outperforms the state-of-the-arts.

Index Terms— Person Search, Multi-Loss, Feature Em-
bedding

1. INTRODUCTION

Person search aims at localizing and matching query persons
from the whole monitoring gallery image without relying on
the annotations of pedestrian candidate boxes [1]. It has wide
range of applications in areas such as video analysis [2], in-
telligent surveillance [3], and other systems [4]. Many person
search methods [1, 5, 6, 7] are mainly composed of two com-
ponents: a pedestrian detector [8] to determine the locations
of pedestrian candidates, and a person re-identification algo-
rithm [9, 10] to re-identify the detected candidates. Although
significant progress has been made in both pedestrian detec-
tion and person re-identification, person search still remains a

This work is supported by National Natural Science Foundation of Chi-
na (NSFC, No.U1613209, 61340046, 61673030), Natural Science Founda-
tion of Guangdong Province (No.2015A030311034), Scientific Research
Project of Guangdong Province (No.2015B010919004), Specialized Research
Fund for Strategic and Prospective Industrial Development of Shenzhen City
(No.ZLZBCXLJZI20160729020003), Scientific Research Project of Shen-
zhen City (No.JCYJ20170306164738129), Shenzhen Key Laboratory for
Intelligent Multimedia and Virtual Reality (No.ZDSYS201703031405467).

challenging problem due to the similar appearances of persons,
pedestrian misdetections and false alarms.

Relation to prior work: In recent years, Convolutional
Neural Networks (CNNs) have shown the potential for learn-
ing feature embeddings and similarity metrics in person search.
Most existing methods [1, 6, 7] utilize an end-to-end CNNs
model to jointly optimize both pedestrian detection and per-
son re-identification. The feature embeddings of identities in
training set are learned by training the end-to-end CNNs mod-
el. However, each identity contains only several samples in
person search. If we directly train the end-to-end model with
the weights drawn from Gaussian distributions, it is difficult
to learn the discriminative feature embeddings for different
identities. To this end, a pretrained model, which distinguishes
the cropped identities and backgrounds, is proposed to provide
proper initial state for the whole end-to-end training model.

A recent trend towards learning features is to reinforce C-
NNs with more discriminative information [11,12]. One way is
to learn feature embeddings with the classification loss [13,14].
The softmax loss [7, 15, 16], a classical classification loss, has
been investigated intensively due to its simplicity and prob-
abilistic interpretation. Wen et al. designed center loss [17]
to further minimize the intra-class distance by penalizing the
distances between the features of samples and their centers.
Specifically, since the number of identities is very large in
person search, the model with the softmax loss is difficult to
converge. Xiao et al. [1] proposed the non-parametric online
instance matching (OIM) loss to accelerate the convergence of
the person search model. They treated all unlabeled identities
as one class, and set a fixed temperature to harden the distribu-
tions of both labeled and unlabeled identities. However, the
hard distribution makes the unlabeled identities of the same
class more separated in feature space, which is adverse to the
convergence of the model. In this paper, the improved online
instance matching (IOIM) loss, which hardens the distribution
of labeled identities and softens the distribution of unlabeled
identities, is proposed to enlarge the differences of labeled
identities and minimize the differences of unlabeled identities.
To further minimize the intra-class distance of identification
feature embeddings, we propose a multi-loss fusion strategy
by combining the IOIM loss and center loss. In this way, the
learned feature embeddings of each class are more centralized.
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Fig. 1. Overall framework of improved end-to-end person search network (Best viewed in color).

2. PROPOSED METHOD

2.1. Method Overview
Let K denote the gallery size which refers to the number of the
gallery images. Firstly, the improved person search network
is trained with the proposed multi-loss fusion strategy. Then,
all gallery images G = {G1, ...,Gk, ...,GK} are fed into the
trained person search model to detect pedestrian candidates
P = {PG1

, ...,PGk
, ...,PGK

} and extract their feature embed-
dings. Let f(PiGk

) represent the feature embedding of the i-th
pedestrian candidate in the Gk-th gallery image. The query
person Q is fed into the trained person search model without
the region proposal network to extract the feature embedding
f(Q). Finally, the cosine distances between f(Q) and f(PiGk

)
are calculated to search the query person Q in the gallery G.

2.2. Improved Person Search Network

Fig. 1 depicts that our framework contains two major phases.
In pretraining phase, the pretrained model is designed to obtain
proper initial state for training phase. In training phase, the
training model is used to learn the feature embeddings for
query person Q and pedestrian candidates P in the gallery G.

(1) Pretraining phase. The pretrained model is illustrated
in Fig. 1 (a). We crop the ground truth bounding boxes of all
training identities from the training set, and randomly sample
the same number of background boxes. The number of training
identities is C, and all background boxes are treated as one
class. All of them are resized to 224 × 224, and fed into
the CNNs model. The CNNs model is connected with a 256
dimensional fully-connected (Fc) layer which is followed by
two branches. One is directly connected with center loss [17]
which learns C+1 centers to make the features of intra-class
much closer, and the other is followed by a batch normalization
(BN) layer, a ReLU layer, a dropout layer, a C+1 dimensional
Fc layer, and softmax loss. The model pretrained with these
two loss functions is utilized to initialize the training model.

(2) Training phase. As depicted in Fig. 1 (b), the training
model contains three major modules: the backbone network,

the region proposal network and the identification network.
The structures of the three modules are described as follows:

Backbone network. The backbone network adopts the
front part of the pretrained CNNs model to learn features for
pedestrian detection and identification.

Region proposal network. The region proposal network
[18] is utilized to detect the pedestrian candidates in the whole
monitoring image. According to [1], a 512× 3× 3 convolu-
tional (Conv) layer is connected to the feature maps obtained
by the backbone network. An 18× 1× 1 Conv layer followed
by softmax loss is used to predict the scores of pedestrians
candidates or backgrounds, and a 36× 1× 1 Conv layer with
smoothed-L1 loss is used to predict the locations of pedestrian
candidates. According to the predicted locations, all feature
maps of pedestrian candidates are cropped and converted with
a fixed size by the region of interest (RoI) layer.

Identification network. The identification network com-
posed of the rest of the pretrained CNNs model is employed
to learn feature embeddings of pedestrian candidates.

Overall, the end-to-end model is trained with several loss
functions. A two dimensional Fc layer with softmax loss is
deployed to eliminate backgrounds. An eight dimensional Fc
layer with smoothed-L1 loss is utilized to refine the location-
s of pedestrian candidates. To further distinguish different
identities, we propose a multi-loss fusion strategy to learn
discriminative identification feature embeddings.

2.3. Multi-loss Fusion Strategy
The online instance matching (OIM) loss [1] is a non-
parametric function which utilizes a lookup table V ∈ RD×C

to store the features of all labeled identities, and a circular
queue U ∈ RD×Z to store the features of those unlabeled
identities in recent mini-batches. The OIM loss is defined as:

LOIM = −
M∑
i=1

log

(
evTt xi/τ∑C

j=1e
vTj xi/τ+

∑Z
k=1e

uT
k xi/τ

)
, (1)

where M is the number of training data in a batch, and xi is
the i-th normalized 256 dimensional feature with the label t
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(t ∈ [1, C], C is the number of training identities). The term
vTt xi, in which vt is the t-th column of V, denotes the score
classified as the t-th labeled identities, and uTk xi represents
the score classified as the k-th unlabeled identity. The item
uk is the k-th column of U (k ∈ [1, Z], and Z is the queue
size). The temperature parameter τ is related to the probability
distribution over different classes [19].

When τ is relatively smaller, the differences of uTk xi with
different k are larger, which results in the harder probability
distribution over different unlabeled identities. Therefore, dif-
ferent unlabeled identities are more discriminative. The terms
vTt xi and vTj xi have similar principle to uTk xi. In OIM loss
function, the same τ is set for vTt xi, vTj xi and uTk xi, which
aims to make both labeled and unlabeled identities more dis-
criminative. However, all unlabeled identities are treated as
one class in OIM loss function. The differences among unla-
beled identities in feature space will increase the intra-class
errors. Therefore, we modify OIM loss by using a smaller τ1
(τ1 < 1) to harden the distribution over labeled identities and
a larger τ2 (τ2 > 1) to soften the distribution over unlabeled
identities, generating the improved online instance matching
(IOIM) loss. The mathematical expression of IOIM loss is:

LIOIM = −
M∑
i=1

log

(
evTt xi/τ1∑C

j=1e
vTj xi/τ1+

∑Z
k=1e

uT
k xi/τ2

)
. (2)

In Eq. (2), the value of LIOIM increases with τ2, which
makes the punishments between training identities and unla-
beled identities further increscent. Fig. 2 shows the effects of
the improved person search network with different loss func-
tions. Comparing Fig. 2 (b) with Fig. 2 (a), we can see that
IOIM loss makes different unlabeled identities much closer,
while pushes the labeled identities and unlabeled identities fur-
ther apart. Moreover, collecting lots of efficient samples from
the same identity is unrealistic. It is difficult to distinguish
thousands of identities when each identity has few samples.
If we only use IOIM loss to learn the identification feature
embeddings, the intra-class error is still very large. Consider-
ing the intra-class compactness of features learned by center
loss [17], a multi-loss fusion strategy is proposed as follows:

L = LIOIM +
λ

2

M∑
i=1

‖x̂i − dt‖22 , (3)

where λ is the weight to balance two loss functions, xi is
the i-th unnormalized 256 dimensional feature embedding,
and dt represents the t-th class center of features. The first
term, IOIM loss, is non-parametric and enables the model to
converge much faster. The second term, center loss, is used
to further minimize the intra-class distance by penalizing the
distances between the features of samples and their centers. As
depicted in Fig. 2 (c), the features of the same class are more
centralized by using the proposed multi-loss fusion strategy.
2.4. Optimization
In order to enable the network to learn discriminative feature
embeddings, we update the lookup table, the circular queue,

Labeled identity 1 Labeled identity 2 Labeled identity 3
Unlabeled identity 1 Unlabeled identity 2 Unlabeled identity 3

(a) OIM loss (b) IOIM loss (c) Multi-loss fusion

Fig. 2. The effects of the improved person search network
with (a) OIM loss, (b) IOIM loss and (c) multi-loss fusion
strategy in feature space (Best viewed in color).

and the class centers of different identities in backward com-
putation. The t-th column of the lookup table V is updated in
the (l+1)-th iteration by:

v(l+1)
t = γv(l)t + (1− γ)xi, (4)

where γ is the updating rate, and γ ∈ [0, 1]. In each iteration,
the old terms of the circular queue are replaced with new
features of unlabeled identities. In the (l+1)-th iteration, the
center dj of the j-th class in center loss is updated by:

d(l+1)
j = d(l)

j − α
∑M
i=1 δ(t = j) · (d(l)

j − x̂i)

1 +
∑M
i=1 δ(t = j)

, (5)

where α is the learning rate ranging from 0 to 1, and δ(·) is
the indicator function.

3. EXPERIMENTS AND ANALYSIS

In this section, the proposed method is evaluated on bench-
mark CUHK-SYSU dataset [6] and PRW dataset [7]. We first
describe the details of datasets and their evaluation setups, and
then give our experimental results and analysis.

CUHK-SYSU dataset1 contains 18,184 images, 8,432
labeled identities, and 99,809 annotated pedestrians bounding
boxes in total. The training set contains 11,206 images and
5,532 identities, and the testing set contains 6,978 gallery
frames and 2,900 query persons. Following [6], we use the
protocol with gallery size equal to 100.

PRW dataset2 contains 11,816 images, 933 labeled iden-
tities, and 34,304 annotated pedestrians bounding boxes. The
training set contains 5,704 images and 483 identities, and
the testing set contains 6,112 gallery frames and 2,057 query
persons. Following [7], the gallery size is equal to 6,112.

Experimental settings. We implement our network based
on Caffe [20]. The ResNet-50 [21] is chosen as the CNNs
model, which is initialized by the ImageNet-pretrained mod-
el [21] in pretraining phase. The front 10 and following 6
residual units in CNNs model are respectively employed as
the backbone network and identification network. The temper-
ature parameters τ1 and τ2 of IOIM loss are set to 0.1 and 10,
respectively. The parameters λ = 0.01, γ = 0.5, Z = 5000,
D = 256 and α = 0.5 are set for two datasets. We train the

1http://www.ee.cuhk.edu.hk/˜xgwang/PS/dataset.html
2http://www.liangzheng.com.cn/Project/project_prw.html
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Table 1. Performances of our IPSN using OIM loss, IOIM
loss and multi-loss fusion strategy, and comparison with the
baseline JDI+OIM on CUHK-SYSU and PRW datasets.

Method CUHK-SYSU PRW
mAP(%) top-1(%) mAP(%) top-1(%)

JDI + OIM [1] 75.50 78.70 19.54 60.18
IPSN + OIM 78.81 79.45 19.96 61.84
IPSN + IOIM 79.15 79.55 20.35 58.43
IPSN + Multi-loss1(Ours) 79.78 79.90 21.00 63.10

1 Multi-loss means the proposed multi-loss fusion strategy.

Table 2. Comparisons among different end-to-end methods
on the occlusion, low-resolution and whole testing set.

E2E PS [6] JDI + OIM [1] Ours
mAP(%) top-1(%) mAP(%) top-1(%) mAP(%) top-1(%)

Occlusion 49.66 50.80 57.31 58.82 60.51 57.75
Low-res 49.95 53.45 55.56 59.66 61.38 61.38
Whole 69.69 72.97 75.50 78.70 79.78 79.90

model using Nesterov accelerated gradient decent [22] for two
datasets with a NVIDIA GeForce GTX 1080 GPU. The learn-
ing rate is initially set as 0.001. All experiments are evaluated
with mean Average Precision (mAP) and top-1 matching rate.

Analysis of the improved network and loss. Table 1
shows the results of improved person search network (IPSN)
with OIM loss, IOIM loss, and multi-loss fusion strategy on
CUHK-SYSU and PRW datasets. It can be observed that IP-
SN+OIM has better mAP and top-1 than joint detection and
identification feature learning (JDI+OIM) [1] on two datasets.
It is because that the pretraining phase in proposed IPSN pro-
vides proper initial state for the whole training network, and
boosts the convergence of OIM loss. Moreover, IPSN+IOIM
outperforms IPSN+OIM on CUHK-SYSU dataset, since the
proposed IOIM loss makes the feature embeddings of unla-
beled identities much closer by softening the probability distri-
bution over unlabeled identities. IPSN+IOIM also has better
mAP and competitive top-1 on PRW dataset. Furthermore,
the proposed IPSN with multi-loss fusion strategy obtains
the highest mAP and top-1 on two datasets, which shows the
significance of penalizing the intra-class distances of all iden-
tities. The training loss curves of JDI+OIM and our method
are shown in Fig.3. It can be seen that the loss curve of our
method drops and converges much faster, which proves the
effectiveness of the proposed method.

Evaluation on occlusion and low-resolution subsets. To
evaluate the robustness of the proposed method, we conduct
experiments on the occlusion and low-resolution subsets of
CUHK-SYSU dataset. The results are shown in Table 2. It
is observed that our method achieves better mAP and top-1
than other two end-to-end methods, namely end-to-end person
search (E2E PS) and JDI+OIM, on low-resolution subset. For
occlusion subset, the results of our method is still competitive.
Both occlusion and low-resolution subsets miss much appear-
ance information of persons, so all the methods perform worse
on these two testing subsets than on the whole testing set.

0 10K 20K 30K 40K 50K
Iteration
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6

8
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ss

JDI+OIM
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Fig. 3. The loss curves of JDI+OIM and the proposed method
on CUHK-SYSU dataset (Best viewed in color).
Table 3. Compare proposed method with state-of-the-arts.

Method CUHK-SYSU PRW
mAP(%) top-1(%) mAP(%) top-1(%)

ACF + LOMO XQDA [1] 55.50 63.10 10.50 31.50
SSD + DLDP [23] 57.76 64.59 11.80 37.80
E2E PS [6] 69.69 72.97 - -
GT + DLDP [23] 1 74.00 76.70 - -
DPM + DLDP [23] - - 15.59 45.40
DPM Alex + IDEdet [7] - - 20.20 48.20
JDI + OIM [1] 75.50 78.70 19.54 60.18
Ours 79.78 79.90 21.00 63.10

1 GT means the ground truth bounding boxes of pedestrians.

Comparision with state-of-the-arts. Table 3 shows the
comparison results between the proposed method and state-
of-the-arts on CUHK-SYSU and PRW datasets. Our method
performs better than other combinations of pedestrian de-
tectors and person re-identification algorithms, such as
ACF+LOMO XQDA [1], SSD+DLDP [23], DPM+DLDP
[23], and DPM Alex+IDEdet [7]. It is because that our method
utilizes a unified network to jointly learn feature embeddings
for pedestrian detection and person re-identification, which
can avoid some false detection alarms and misdetections.
Moreover, our method achieves 79.78% mAP and 79.90% top-
1 on CUHK-SYSU dataset, which outperform GT+DLDP [23]
by 5.78% and 3.20%, respectively. It further implies that the
end-to-end network can reduce the influence of the misdetec-
tions. While both E2E PS [6] and JDI+OIM are end-to-end
networks, our method significantly outperforms them. The
results verify the learned feature embeddings in our method
are more discriminative.

4. CONCLUSIONS

This paper presents an improved end-to-end network with
multi-loss to learn discriminative feature embeddings for per-
son search. The designed pretrained model provides proper
initial state for the training network. Moreover, the proposed
network reduces the pedestrian misdetections and false alarms
by jointly optimizing pedestrian detection and identification.
The proposed multi-loss fusion strategy makes full use of the
information of unlabeled identities and makes the intra-class
feature embeddings much closer. Experimental results on two
benchmark datasets, CUHK-SYSU and PRW, demonstrate that
our method achieves better mAP and top-1 than existing state-
of-the-art methods. Results on two testing subsets confirm that
our method is robust to occlusion and low-resolution.
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