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ABSTRACT

In this work we propose tracking as a generic addition to the in-
stance search task. From video data perspective, much information
that can be used is not taken into account in the traditional instance
search approach. This work aims to provide insights on exploiting
such existing information by means of tracking and the proper com-
bination of the results, independently of the instance search system.
We also present a study on the improvement of the system when us-
ing multiple independent instances (up to 4) of the same person. Ex-
perimental results show that our system improves substantially its
performance when using tracking. Best configuration improves from
mAP = 0.447 to mAP = 0.511 for a single example, and from
mAP = 0.647 to mAP = 0.704 for multiple (4) given examples.

1. INTRODUCTION

An important need in many situations involving video collections
(archive video search/reuse, surveillance, law enforcement, protec-
tion of brand/logo use...) is to find images or video segments of a
certain specific person, object, or place, given a visual example. To
this purpose, instance search is defined as the problem of finding
instances of the specific query in a set of images or videos given a
visual example.

Typically, an instance search system takes a query given as an
image (or images) optionally region specified (rectangle or segment),
and returns a ranked list of possible instances of that query from a
dataset. A main problem is that, usually, only a single image is pro-
vided, and the results become solely dependent to the specific char-
acteristics of that image (pose, illumination, viewpoint...). In other
words, the system becomes very dependent towards the matching
between the given visual example and the dataset.

For queries coming from videos, we propose to exploit the al-
ready existing video data. The objective is to provide more variance
to the system, so that it is not so biased towards a single visual ex-
ample. By applying tracking, we can collect many sample images of
the target instance with sufficient variation which may result in better
instance search performance. In figure 1 we show the expected map-
ping of the query expansion by using tracking to the feature space.

In order to merge multiple ranked lists obtained by multiple sam-
ple images we propose to use a voting scheme. In this paper we study
two possible voting schemes, one assuming dependence between the
examples provided by tracking and the other assuming independence
between them. We found that, by considering dependence between
samples from tracking, our system achieves better performance than
considering these samples as independent.

We developed a baseline to test the hypothesis on whether track-
ing helps or not in the instance search task. We used the TRECVID
[1] instance search task for this purpose. From 2016, TRECVID
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Fig. 1: Single query being expanded by means of tracking. The
new query examples coming from the tracked cues introduce new
information of the queried person.

INS task is based on retrieving a specific person in a specific loca-
tion. This means that the correct person (i.e. the query) will be only
tagged as good if he/she is in the specified location. In order to cor-
rectly evaluate our method we generated a person ground truth for
this purpose based on the TRECVID INS dataset. Such ground truth
will be made publicly available to help further research.

Our contribution: we provide insights on the influence of track-
ing as a generic and automatic query expansion for video instance
search, and propose a way to combine the results. Also we show
the differences on performance between using queries provided by
tracking the original query, independent queries provided in a super-
vised manner, and the combination of both.

2. RELATED WORK

Person search:
Most of the literature on person instance search relies on CNN

models to extract face features in order to look for instances corre-
sponding to the original query. [2, 3, 4, 5, 6, 7] use VGG-faces [8]
for face feature extraction, [9] maps the face features on a FaceNet
[10] embedding, and [11] uses a Faster-RCNN [12] approach.

Multiple queries - Tracking:
Multiple queries are shown to be useful in [13] and [14]. Many

query expansion techniques have been tested for the instance search
task. [2] uses the first 20 ranks outputted from a first run for query
expansion, [5] makes use of a first run too (top 50 ranks) to fine tune
a VGG-Face CNN model and use these feature vectors to do the final
search. On a more supervised way, [11] annotated every instance of
the main characters in an episode of a TV show to train a Faster-
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RCNN, while [7] looked for faces of the actors on the Internet.
In what tracking concerns, [9] and [6] make use of person track-

ing for query expansion, and [5] uses person tracking for person re-
identification. [9] makes use of backward and forward face tracking
to provide an average over a FaceNet embedding, and [6] tracks both
the original query (for query expansion) and the dataset (for corre-
lating object apparitions).

This work studies the behavior of an instance search system
when applying tracking to the given query/queries as a generic way
to improve the performance of the system for free, i.e., without re-
quiring any extra data besides the video and the query. Our pro-
posal is to treat every tracking proposal as an independent query,
and vote among the results having into account the tracking on the
initial query. We study the implications of applying tracking to the
instance search problem, and propose several approaches.

3. INSTANCE SEARCH

We developed a person retrieval instance search system following
an approach based on [15] and [16]. It extracts region-based CNN
features [17] from object candidates to generate the database. They
are indexed using product quantization (PQ) and an inverted index
[18], which enables to search relevant objects efficiently.

Here, we will differentiate between face feature space generation
and querying.

On database generation: first, we sample the dataset videos at
1fps. Then, for each frame, we extract the faces of the people in it
by means of a multi-task cascaded CNN [19]. For every face, its fea-
tures are extracted using FaceNet [10]. These features are clustered
to build an inverted index, and the PQ-compressed codes are stored
in them.

On querying: given an initial mask or bounding box of the per-
son of interest, his/her face bounding box is detected and the face
features are extracted. The distances between these features from
the query and the cluster centroids are calculated (in this work we
used the Euclidean distance). Then, the top-k closest centroids to the
query are chosen, and every face contained in each cluster is com-
pared against the original face query to provide a similarity score to,
finally, propose a ranked list of frames.

The above methodology is specified for a single, independent
query. To combine multiple queries we refer to our voting scheme
in Section 4.3, on a set of independent queries. In short, we com-
bine the resulting ranked list from every query and do a re-ranking
based on the final score of each shot. As can be seen in table 1 (No
tracking column), using multiple queries of the same person instead
of a single one improves, by a huge margin, the results. On aver-
age, the difference between using a single query vs multiple queries
per person is, for 2 provided queries: ∆mAP = +0.098, and for 4
provided queries: ∆mAP = +0.200.

4. TRACKED INSTANCE SEARCH

In the previous section we stated that multiple queries of the same
instance provide, if the multiple queries do not contain a bad query
that maximizes a bad retrieval score, a boost in performance.

We want to extend this idea to unsupervised queries, this is, to
generate query examples derived from an initial query example from
a video. We achieve this by tracking, backward and forward, the
original query example. Tracking will provide a new set of occur-
rences that will correspond to the original query, and thus, diversity
among the results from the instance search system. Figure 2 shows
our pipeline.

4.1. Tracking

The aim of tracking is to provide diversity to the given query making
use of the video information. This is, given an initial query example
from a video, track it forward and backward in order to provide more
examples of it. For a general case, tracking would come in handy
for many obvious reasons, which can be summarized in automated
query expansion. Our tracker uses [19] to detect faces in a frame and
provide their alignment points (eyes, nose and mouth), and [20] to
extract the face features.

We first position at the frame of the video corresponding to the
given example qn=0 (n ∈ N), and define a temporal window w ≥ 0
centered over it (w = 0 means no tracking). The backward cue
bn<0 ≥ 0 ∈ N and the forward cue fn>0 ≥ 0 ∈ N contain the
neighboring frames of the given example, where n ∈ [−w, . . . , w].

We compare the distance between the face feature vector from
qn=0, vn=0, against the feature vector of every face in the frames
included in w, v(k)n , where k ∈ N corresponds to each face in the
frame (as there can be 0 . . .K faces in a frame). To do so we use
the Euclidean distance. Then, the most similar face per frame is
chosen and thresholded, so we get 1 or 0 examples for that frame.
The resulting examples for a given query will result in q ≤ 2ẇ + 1
(2ẇ for examples provided by tracking + 1 given example).

It is important to state that the sample rate r over n is not irrel-
evant. Let us define a sample rate r > 0 ∈ N. n will be sampled
as n ∈ r ˙[−w, . . . , w], e.g. if n is sampled on a rate r = 1 over a
window w = 2 then n = [−2, 1, 0, 1, 2]. This will have impact on
the variance of the proposed samples by the tracked examples qn 6=0

with respect to the original query qn=0. If r = 1 the neighboring
frames will be the immediate anterior and posterior frames, but if
r = 20 the neighboring frames will be further away from the given
example. This means that the variance of the samples provided by
tracking, in a general case, will depend on the sampling rate r, e.g.
r = 1 might produce little variance over the original given example
while r = 20 might produce almost independent queries.

Caveat: the tracking is performed on the shot where the given
example is provided. This means that, working in a high rate / big
window configuration (e.g. (r = 20, w = 5)), some frames may
fall outside the shot and, therefore, not taken in account. Further
research could track over a temporal window without shot time con-
straint, taking in account the whole video.

4.2. Instance search

The instance search system is described in Section 3. Examples pro-
vided by the tracking step are processed independently to produce a
set of ranked results (one ranked list per example).

4.3. Voting

Finally, a voting step is proposed in order to combine the results
provided by the instance search system. To do so, we have worked
on two possible voting schemes, V oSc 1 and V oSc 2. The first one
assumes that the visual examples coming from the tracked cues of a
provided example are dependent between them, and the second that
they are independent. The original given examples are considered
always as independent between them.

The goal of video instance search is to find videos from a dataset
where a certain object instance appears. In the TRECVID challenge
the dataset is generated from a TV show, and these videos are shots
from different chapters. Our instance search system returns a scored
set of frames where the queried person is likely to appear, while each
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Fig. 2: Our pipeline. First we track the original query example along a defined window, which will propose a set of new query examples.
Then the instance search is performed individually for all the proposed query examples (original query example and query examples provided
by tracking). Finally, we combine the results of every query example in order to have a ranked list of shots that contain the queried person.

one of these frames correspond to a certain shot in the dataset. The
final result is an ordered list of shots depending on their score.

Let us define s
(i)
n,k as the score of containing the person to be

searched for a frame i in the resulting ranked list n corresponding to
the tracked cue of a provided example k, where n ∈ [−w, . . . , w],
being bq ∈ [−w, . . . , 0) and fq ∈ (0, . . . , w] the tracked cues de-
fined in Section 4.1, and 0 the original query. Each of these scores
are associated to a single frame in the database without repetition.

Every visual example (original and coming from tracking) gen-
erates its own ranked list of frames likely to contain an instance of
the query. V oSc 1 assumes dependency between results coming
from the same tracked cues, so they are merged to a single ranked
list of frames by doing a max pooling (taking the maximum score for
every frame). Let s(i)k be the resulting score list of the combination
between s

(i)
n,k for n ∈ [−w, . . . , w]. Then:

s
(i)
k = max(s

(i)
−w,k, · · · , s

(i)
w,k) (1)

After doing this for every given example k, we then proceed to
the combination among them. First, we map every resulting frame i
into its corresponding shot u, where u ≤ i. Then, we combine the
shots depending on their score and number of instances retrieved.
This combination will result in s(u), which is the resulting score
of the shot u. This combination between shots is performed as the
sample mean.

s(u) =
1

K

K∑
1

(s
(u)
1 , · · · , s(u)k ) (2)

V oSc 1 follows this two-step voting scheme (merge the results
from tracked cues and combine them with other given examples if
any), and V oSc 2 only follows the second step (combine all the
proposals as if they were all given examples). Here, a discussion on
how we consider a query to be independent or not arises. Generally
speaking, a query coming from the tracking phase could be consid-
ered as independent when it differs largely (in terms of pose, illumi-
nation...) within its neighbors. We expect an independent query to
produce different results than the queries that are only a little varia-
tion of the original query, which should have similar results. In this
case, the results in Figure 4 conclude that the tracked cues should
not be considered as independent.

5. EXPERIMENTS

Dataset
We used the dataset provided by TRECVID for instance search

task. It is composed by 244 chapters of the BBC show Eastenders,
resulting in 464 hours of video data separated in 471527 shots.

5.1. Ground truth generation
In order to evaluate this work, we generated the ground truth for
person retrieval (independent of place) on the TRECVID [1] 2016
instance search task. To do so, we proceeded in the following man-
ner: for every resulting ranked list of shots in every experiment (e.g.
(r = 2, w = 3)), we evaluated the first 300 results. If the queried
person appeared in the resulting shot, we added that shot to the
ground truth for the corresponding query. We evaluated the first 300
results for all the combinations between window size (0 to 5) and
rate (1,2,5,20). We ended up with a ground truth of 1143 samples
per person on average (8006 samples in total), being Stacey (query
9174) the query with maximum number of annotated shots (1583),
and Jim (query 9162) the query with minimum number of annotated
shots (409) (see TRECVID INS 2016 task for details). This ground
truth will be made publicly available to help further research.

5.2. Tracked instance search

The combination of tracking and voting make the system perfor-
mance improve. As seen in table 1, by applying our method with
an (r = 2, w = 5) configuration, the mAP has a percentage in-
crease of 14.3% for single query tracking. For multiple queries, the
system improves by 18% when having 2 provided queries, and by
8.2% for 4 provided queries. In figure 3 different configurations of
our method are studied.

Best configuration for each case scenario makes mAP increase
by: ∆mAP = +0.064 for a single query (r = 2, w = 5),
∆mAP = +0.108 for 2 queries (r = 5, w = 5), and ∆mAP =
+0.057 for 4 queries (r = 5, w = 2).

A discussion on different frame rates arises. We stated along the
work that a higher rate should lead to better results due to a larger
variation of the produced examples by tracking. In figure 3, rate r =
5 outperforms r = 1 and r = 2 but, clearly, a sampling rate of r =
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Fig. 3: mAP for different window sizes (w = 0, 1, 2, 3, 4, 5), where w = 0 corresponds to no tracking, and rates (r = 1, 2, 5, 20) for a
single given query example (left), 2 provided query examples (middle), and 4 provided query examples (right), using voting scheme V oSc 1.

20 performs way worse than the others. This has two big caveats:
first, it is more likely to find the same person’s face in closer frames.
As we work on a TV show dataset, there are many scene changes
where the original query might not be present. If a sampled frame
does not contain an instance of the original query (the person to track
is not present), we are not able to use that as extra information for
the instance search.

Second caveat: as stated in section 4.1, we work on a shot-
defined length per query. This means that, exclusively, we track
inside the specific shot containing the original query. The reason-
ing is that we can only be sure that instances of the original query
will be present inside that single shot. Further research could explore
the possibility on tracking along the video (intra search) until finding
a specified number of instances of the original query for the further
instance search (inter search).

Examples given No tracking Tracking

1 0.447 0.511
2 0.545 0.643
4 0.647 0.700

Table 1: Average mAP with and without tracking for the 4 exam-
ples per query provided by TRECVID (2016) INS task. The config-
uration used is (r = 2, w = 5) for tracking and V oSc 1 for voting.

5.3. Voting

In Figure 4 we compare the resulting mAP considering the cues
coming from tracking dependent or independent, this is, merging
them following the defined two-step voting scheme (VoSc 1) or di-
rectly mapping each frame into its corresponding shot and combin-
ing them by applying directly the second step (VoSc 2). Results
show that by merging first the results coming from the tracked cues
better results are achieved, rather than directly combining the out-
puts from the instance search for all visual examples (tracked and
provided) as they were independent among them.

5.4. On the amount of extra data

The extra data feeded into the system by means of tracking helps to
have a relative gain of almost a 15% (1 provided query example) for
free (using only the given query and the associated video). It is inter-
esting to note in figure 3 that the system seems to get to a saturation
point (for 2 and 4 provided queries), where increasing the amount
of data provided by the tracker does not improve the performance at
any sampling rate. Further research could explore the performance
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Fig. 4: mAP for a single query example and multiple query examples
(4) for two different voting schemes (VoSc 1 and VoSc 2). VoSc 1
considers tracked cues as dependent and provided queries as inde-
pendent, VoSc 2 considers both tracked and given query examples
as independent.

of the system when using larger windows on a single query case, as it
seems that the saturation in that case has not yet been reached, to test
if the system could perform as well as having multiple independent
queries.

6. CONCLUSIONS AND FURTHER RESEARCH

We have investigated the performance of incorporating tracking to
the instance search task, and a way to combine the resulting scored
lists. Having a query and its associated video, we can state that us-
ing tracking as a generic query expansion the performance of the
system can be improved for free (without requiring any more data).
We have also observed that multiple independent queries provide a
considerable increase of performance. Further research could aim at
providing more variable query examples of the same person, so they
could be considered as independent queries.
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