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ABSTRACT

Multi-modal data lies on heterogeneous feature spaces, which
brings a significant challenge to cross-modal retrieval. Some
works have been proposed to cope with this problem by
learning a common subspace. However, previous methods
often learn the common subspace by enhancing the relation
between embedded features and relevant class labels but ig-
nore the relation between embedded features and irrelevant
class labels. Additionally, most methods assume that irrel-
evant samples are of equal importance. Considering this,
we propose to train an optimal common embedding space
via cross-modal learning to rank with adaptive listwise con-
straint (CMAL2R) based on two-branch neural networks. The
listwise loss function in CMAL2R adaptively assigns larger
margins to harder irrelevant samples, strengthening the rela-
tion between embedded features and irrelevant class labels.
Experiments on Wikipedia and Pascal datasets demonstrate
the effectiveness for bi-directional image-text retrieval.

Index Terms— Cross-modal retrieval, common space,
adaptive listwise theory, cross-modal learning to rank

1. INTRODUCTION

This paper focuses on solving bi-directional image-text re-
trieval problem, which attracts increasing attention in cross-
modal retrieval tasks [1], [2], [3], [4], [5]. However, because
of the heterogeneity gap between data from different modal-
ities, we cannot directly calculate cross-modal similarities.
There have been many methods proposed for alleviating this
problem by learning a common subspace [6]. The learning of
common space has been the prevailing method in cross-modal
retrieval, which can be mainly classified into unsupervised
methods and supervised methods.

Unsupervised cross-modal methods learn the common
subspace by utilizing paired samples between two different
modalities. Canonical correlation analysis (CCA) [7] embeds
image and text features respectively into a common space,

* Corresponding author. This work was partially supported by Na-
tional Natural Science Foundation of China (NSFC) projects No. 61202296,
61750110516 and Natural Science Foundation of Guangdong Province
project No. S2012030006242.

which is learned by maximizing the pairwise correlation
between the projected vectors of two different modalities.
Deep CCA [8] extends the traditional CCA and simultane-
ously learns two deep nonlinear mappings by combining the
autoencoder with CCA. In these methods, the feature vec-
tors of each highly relevant image-text pair are respectively
represented in the common subspace so as to calculate the
similarity across different modalities.

Supervised cross-modal methods exploit class informa-
tion to boost the learning of the common space of multi-modal
data. These methods enforce inter samples to be mapped far
apart while the intra samples lie as close as possible for ob-
taining a more discriminative common representation. For
example, generalized multiview analysis (GMA) [9] , a su-
pervised extension of CCA, learns a discriminative space by
exploiting the class information. In [10], the authors propose
a learning algorithm which aims to learn two projection ma-
trices to map the data of the coupled spaces into the common
space defined by class labels. Besides, multi-label Canonical
Correlation Analysis (ml-CAA) [11] is proposed to cope with
the problem of multi-label annotations. As an extension of
CAA, ml-CAA effectively incorporates the multi-label infor-
mation to learn a better shared subspace.

Although the above methods have made some contribu-
tions for cross-modal retrieval tasks, their performance still
cannot meet the need in many real-word applications. The
reason is that most methods focus on exploiting the relation
between embedding features and relevant class labels but ne-
glect the relation between embedded features and irrelevant
class labels. That is to say, they pull each sample toward
the direction of its relevant samples but pay little attention to
pushing each sample far away from the directions of its irrele-
vant samples. In fact, the relation between embedded features
and irrelevant class labels can provide abundant information
for learning a more discriminative common subspace.

In order to overcome the above problem, we utilize learn-
ing to rank framework to learn the common space. Learn-
ing to rank, a kind of supervised learning, aims to train a
ranking-based loss function to preserve the orders of the re-
trieved documents according to a given query. A lot of works
have been proposed to learn a common subspace using learn-
ing to rank [12], [13], [14], [15], [16], [17]. In this paper,
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we propose CMAL2R which incorporates adaptive listwise
constraint into cross-modal learning to rank to learn the com-
mon subspace. CMAL2R can exploit a great deal of irrele-
vant samples to enhance the correlation between embedded
features and irrelevant class labels. Furthermore, CMAL2R
can assign larger margins to harder irrelevant samples and
capture the importance of irrelevant samples ranked in differ-
ent positions. Since the learning algorithm is more concerned
with the hard irrelevant samples than those irrelevant samples
ranked behind, the learned common subspace will be more
generalized. Finally, the proposed bi-directional loss function
utilizes the semantic information from two directions, which
motivates the algorithm to search better common subspace.

2. PROPOSED METHOD

2.1. Problem Description

Suppose the training dataset consists of n image-text pairs,
i.e. D = {(xi,yi)}ni=1, where xi ∈ X ⊆ Rp denotes a
p-dimensional visual feature vector from the i-th image and
yi ∈ Y ⊆ Rq refers to a q-dimensional feature vector from
the i-th text. The image set and text set are denoted as X =
{x1,x2, ...,xn} and Y = {y1,y2, ...,yn} respectively. Note
that the i-th image xi ∈ X and the i-th text yi ∈ Y come from
same pair.

To investigate the latent correlation between relevant im-
age and text, a common representation is learned for image
and text from different modalities. Then the relevance be-
tween image and text can be measured by calculating their
cosine similarity in the learned common multi-modal embed-
ding space E ⊆ Rd. For simplicity, we treat images as queries
and texts as documents in following sections. Given an im-
age query xi ∈ X , we define a two-layer neural network to
map image feature into a common multi-modal embedding
space via f I : X → E , where f I(·) is the image embedding
function. Similarly, we map each text feature into a shared
embedding space by fT : Y → E , where fT (·) is the text
embedding function. Through the embedding function f(·),
the similarity measurement between image query xi and re-
trieved text yj can be simply obtained by computing the inner
product in the shared embedding space, and then we normal-
ize the similarity score to [0,1], i.e.,

s(f Ii , f
T
j ) =

1

2
(1 + f I

T

i fTj ). (1)

In the above formula, s(f Ii , f
T
j ) is simply represented as sij

which refers to the similarity score between i-th image query
and j-th retrieved text. Then the embedded features from i-th
image query and j-th retrieved text are denoted as f Ii and fTj
respectively. As f Ii and fTj are normalization by the L2 norm,
the inner product f I

T

i fTj actually equals to cosine similar-
ity. In this case, the latent correlation between relevant image

Fig. 1. Flowchart of the proposed CMAL2R. For a given
image set {xi}K+1

i=1 and text set {yj}K+1
j=1 , we firstly embed

their preprocessed features into the common space by two-
branch networks with four full-connected layers(fc) to ob-
tain their feature {f Ii }

K+1
i=1 and {fTj }

K+1
j=1 , then the pairwise

similarity scores are calculated as {sIj}
K+1
j=1 and {sTi }

K+1
i=1

for the image query and text query respectively. Next, we
map each score list to the distribution of the top one group.
Finally, we define the bi-directional listwise loss function
as the negative log likelihood of the ground-truth top one
group: − logP (Ω1|x1)− logP (Ω1|y1). The circle with yel-
low color represents an image query or text query and the
squares with blue color represent the documents from dif-
ferent classes. The bi-directional listwise loss function can
assign adaptive margin according to the rank of different doc-
uments. The nearer the document is, the larger the value mk

is assigned.

and text depends on the embedding parameters W from two-
branch networks. Therefore, the major goal of our method is
to effectively learn the embedding parameters, which will be
detailed in the following subsections.

2.2. Loss Function

To learn the parameters of two-branch networks as shown in
Fig.1, the cross-modal retrieval task is formulated as a listwise
learning-to-rank problem. Firstly, we give some important
concepts. Suppose that all document texts are identified with
the numbers 1,2,...,n. A permutation π on the texts is defined
as a bijection from 1,2,...,n to itself. We write the permutation
as π = 〈π(1), π(2), ..., π(n)〉, where π(j) denotes the text
index at position j and π−1(j) denotes the rank of text yj in
permutation π.

In order to predict the permutation correctly, the crucial
issue is how to design a listwise loss function to measure the
difference between the predicted permutation and the ground-
truth permutation. Based on the consideration, we introduce
the ListMLE [18] method to define such loss function, which
can transform ranking similarity scores to a probability distri-
bution. And then we can maximize the negative log likelihood
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of ground-truth permutations as the loss function.

Ltotal = −
n∑

i=1

logP (πi|xi) (2)

where πi denotes the text permutation corresponding to the
image query xi. Given an image query xi, however, we only
know the ground-truth text should be ranked in the first po-
sition and no information about orders within the irrelevant
texts is provided. That is to say, we can’t obtain the total or-
der of all the retrieved texts which is needed to generate the
ground-truth permutation. Thus, the above loss function can’t
be directly applied to deal with cross-modal retrieval task.

To alleviate the above problem, the top one probability
model is employed which only forces the ground-truth docu-
ment to be ranked before all the irrelevant documents. Given
an image query xi, we use Ωi to denote the set of all ground-
truth permutations consistent with this restriction

Ωi = {π|π(1) = i} (3)

which denotes that the top document in all the permutations
of Ωi is exactly yi. Next, we can easily obtain the top one
probability by

P (Ωi|xi) =
φ(sii)∑n

k=1 φ(s
i
k)

(4)

where φ(·) is an increasing and strictly positive mapping
function. For each i ranging from 1 to n, obviously, the top
one probabilities P (Ωi|xi) form a probability distribution
over set Ωi. So given the training set {xi,Ωi}ni=1, we can
define the loss function as the negative log likelihood of the
ground-truth top one group as follows:

Ltop one = −
n∑

i=1

logP (Ωi|xi). (5)

Different from conventional listwise learning-to-rank meth-
ods such as ListMLE [18] and ListNet [19] which pay identi-
cal attention to different training samples, we introduce an
adaptive listwise constraint [20] to cope with the problem.
In the following section, we will detail the adaptive listwise
method.

2.3. An Adaptive Margin Listwise Loss

We employ the mapping function as follows:

φ(sik) = exp(
sik +mi

k

β
) (6)

where mi
k refers to the adaptive margin between i-th query

and k-th retrieved document and β is a sharpness parameter.

Now, we can rewrite the loss of a single training sample as
follows:

l = log(1 +
∑
k 6=i

exp(
sik − sii +mi

k −mi
i

β
)). (7)

Since what we only concern about is the difference between
mi

k and mi
i, m

i
i is always set to zero and mi

k is referred as an
adaptive margin which can improve the generalization per-
formance. The adaptive margin is simply defined as follows
[20]:

mi
k =


3

4
− π̃−1i (k)− 2

2(n− 2)
, k 6= i

0, k = i

(8)

where π̃−1i (k) is the rank of k-th retrieved document in per-
mutation π̃i. mi

k is limited to the range [ 14 ,
3
4 ]. π̃i is obtained

by keeping the relevant text at the top position, and sorting ir-
relevant texts in descending order according to their similarity
scores

π̃i =
〈
i, sort(sik)

〉
, k 6= i. (9)

According to (8), the nearer irrelevant texts can be assigned
larger margins than those further ones, which means the hard
irrelevant samples will be pushed a larger margin away from
the image query. Specially, the negative samples from diverse
classes are pushed different distance away from the given
query, which can be interpreted as exploring the relation be-
tween embedded features and irrelevant class labels.

2.4. Sampling Algorithm

In order to reduce the computation, we propose a more scal-
able method to learn the network’s parameters. The main idea
is that we randomly sample T image queries and T corre-
sponding text queries. Then we randomly sample K irrele-
vant texts and K irrelevant images for each image query and
text query respectively (the irrelevant documents are all in-
dexed with N = {ni}Ki=1). Thus, there are T (K + 1) images
and T (K + 1) texts in each mini-batch. Instead of sampling
one training sample with a long permutation, our proposed
method utilizes more training samples with shorter permuta-
tions in each iteration, which is more efficient in computation.
So when we treat images as queries, the loss function in each
iteration is as follows:

L1(s) =

T∑
i=1

log
∑

k∈N\i

exp(
sik +mi

k

β
)−

sii+ +mi
i+

β

 .

(10)

Similarly, when we treat texts as queries, the loss function in
each iteration is as follows:

L2(s) =

T∑
j=1

log
∑

k∈N\j

exp(
sjk +mj

k

β
)−

sjj+ +mj
j+

β

 .

(11)
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Table 1. MAP score comparison with state-of-the-art meth-
ods on two benchmark datasets.

Method Img2Txt Txt2Img Average Dataset
CCA 0.2160 0.1872 0.2016

Wiki

SCM 0.2759 0.2336 0.2548
LCFS 0.2711 0.2043 0.2377
MvDA 0.2971 0.2319 0.2645
LGCFL 0.3775 0.3160 0.3467
ml-CCA 0.3527 0.2873 0.3120
GMLDA 0.3159 0.2885 0.3022
GMMFA 0.3155 0.2964 0.3060
CMAL2R 0.4251 0.3377 0.3814

CMAL2R(bi.) 0.4316 0.3416 0.3866
CCA 0.3073 0.2945 0.3009

Pascal
LCFS 0.4278 0.3355 0.3816

LGCFL 0.4362 0.3440 0.3901
ml-CAA 0.4303 0.3885 0.4094
CMAL2R 0.5112 0.4792 0.4952

CMAL2R(bi.) 0.5172 0.4831 0.5002

Finally, the bi-directional listwise loss is as follows:

L(s) = αL1(s) + (1− α)L2(s) +
λ

2

4∑
m=1

‖W(m)‖2F (12)

where α balances the strength of the listwise loss in each
direction, λ controls the strength of regularization, and
{W(m)}4m=1 are the parameters of two-branch networks.

3. EXPERIMENTAL RESULTS

3.1. Datasets

1)Wikipedia Dataset [21]: This dataset consists of 2866
image-text pairs and it is divided into 10 semantic categories.
For fair comparison, we use the same image features, which
are represented into a 4096 dimensional vectors from the fc7
layer of CNN [22], and text features, which are generated into
the 100 dimensional skip-gram word vectors by the word2vec
model and a simple average calculation. Moreover, we follow
a same dataset partition according to [23] and 2000 pairs and
866 pairs are selected for training and testing respectively.

2)Pascal Dataset [24]: This dataset consists of 5011 and
4952 image-tag pairs from 20 different semantic classes for
training and testing respectively [25]. Each pair belongs to
one or more of 20 semantic classes. The image and text
features are provided by this dataset, which are represented
as the 512-dimensional GIST features and 399-dimensional
word frequency features respectively. We follow the origin
training-test split and remove some images without the cor-
responding tags. Eventually, 5000 pairs are used for training
and 4919 pairs for testing.

3.2. Experimental Results

The proposed method is compared with several the state-of-
the-arts, such as CCA & SCM [21], GMLDA & GMMFA [9],
LCFS [10], LGCFL [26], ml-CCA [11] and MvDA [27]. We
set α to 0.4 and set β to 0.5 in all experiments. For fairness,
the same image-text features and train/test division are used in
all methods. The mean average precision(MAP) [21] scores
on Wikipedia and Pascal datasets of all the methods are shown
in Table 1.

As we can see from Table 1, our proposed method out-
performs all the compared methods by a large margin. The
reason is that the proposed method can exploit a great deal
of unpair data to enhance the correlation between embedded
features and irrelevant class labels. Furthermore, it pays dif-
ferent attention to the irrelevant samples according to the po-
sitions in which those samples are ranked. Hence, a discrim-
inative and generalized common subspace can be learned in
our framework.

For Wiki dataset, our method achieves the best average
MAP of 0.3866, which is about 4% higher than the second
best result from LGCFL. This is because LGCFL only uti-
lizes the label information as interlinkage to model the image
space and text space and ignores the importance of irrelevant
samples ranked in different positions. However, our method
can pay different attention to the irrelevant samples by the
adaptive margins.

For Pascal dataset, we can see that the proposed method
achieves the best performance with the average MAP at
0.5002, which is about 9% higher than the second best result
from ml-CCA. ml-CCA only utilizes semantic information,
in the form of multi-label information, to establish the corre-
lation across the modalities but ignores the relation between
embedded features and irrelevant class labels.

Finally, bi-directional retrieval results have a little im-
provement over those single-directional results. The reason is
that bi-directional listwise loss can make the best of semantic
information from two directions, which motivates the algo-
rithm to search better common subspace.

4. CONCLUSION

In this paper, we employ two-branch networks to transfer het-
erogeneous feature spaces to a common embedding space and
introduce adaptive listwise constraint into cross-modal learn-
ing to rank to train a discriminative multi-modal embedding
space. This method can exploit the relation between embed-
ded features and irrelevant class labels. Furthermore, the pro-
posed bi-directional listwise loss function can adaptively pay
unequal attention to the irrelevant samples according to the
ranks of those samples. The comprehensive experiment re-
sults on two cross-modal datasets demonstrate the effective-
ness of the proposed method for bi-directional image-text re-
trieval.
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