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ABSTRACT
In query expansion for object retrieval, there is substantial danger
of query drift, where irrelevant information is inferred from pseudo-
relevant images to enrich the query. To address this issue, we pro-
pose a query expansion method from the viewpoint of diffusion. It
explores the structure of highly ranked images in a topological space,
assuming that false positives reside on different manifolds from the
query. For this purpose, a mutual rank graph is defined on pseudo-
relevant images, and their distribution is learned by diffusing their
query similarities through the graph. The relevance of a database
image can thus be obtained by marginalizing over the learned distri-
bution. The mutual rank graph accounts for varying local density in
the image space, leading to great robustness as regards query drift
and high generalization ability. The proposed method experimen-
tally shows a consistent boost in the performance of object retrieval
with handcrafted features on standard benchmarks.

Index Terms — Diffusion, object retrieval, query expansion

1. INTRODUCTION

Object retrieval is an important tool that supports various applica-
tions, e.g., content-based image browsing [1], visual localization [2],
and 3D reconstruction [3, 4]. One problem with object retrieval re-
lates to changes beyond built-in feature invariance, e.g., large illumi-
nation and viewpoint change, occlusion, etc., and the limited visual
information available from the query. One way to compensate for
this deficiency is query expansion (QE) [5–12], which assumes that
most highly ranked images are relevant and have a sufficient number
of variations. The coverage of visual aspects can then be improved
by reissuing highly ranked images as an expanded query.

The above assumption is not always correct due to the imper-
fect discriminative power of image representations. False positives
among high-ranked images may make the inference of the expanded
query diverge from the depicted object, which is known as query
drift [5]. To address this issue, spatial verification has been widely
used to discard geometrically inconsistent image features [5,11,12].
Tolias and Jégou [12] also imposed some similarity and frequency
constraints on image features to pursue a higher precision of pseudo-
relevant images. These studies avoid query drift at the feature level
and so are limited to specific image representations. Qin et al. [8]
developed criteria based on reciprocal nearest neighbors to decide
whether to use an image for QE. The method is parameter-sensitive
and suffers from asymmetric primary ranking biased by an arbitrary
cutoff [10]. Shen et al. [11] proposed the spatially-constrained sim-
ilarity measure (SCSM), which weights pseudo-relevant images on
the basis of their positions in the primary ranking. Arandjelovic and
Zisserman [9] proposed discriminative QE (DQE), which trains a
linear SVM with high and low-ranked images. All database images
are then ranked by their distance from the decision boundary. Nev-
ertheless, false positives may lead to poor hyperplane fitting when
they dominate a set of pseudo-relevant images.

We focus on the avoidance of query drift from a different view-
point. Our objective is to learn a probability distribution of images,
which are highly ranked in a primary search and referred to as piv-
ots hereafter, in terms of their query relevance. The probability that
a database image is positive can be obtained by marginalizing over
the learned distribution. Observing pivots, we find that true positives
are usually on the same structure, e.g., either a cluster or a manifold,
with high similarity while false positives are on different structures.
We also assume that the similarity between the relevances of two
pivots should be consistent with their visual similarity. On the basis
of these assumptions, we propose learning the distribution of pivots
with diffusion [13–17]. A mutual rank graph, which accounts for
varying local density in the image space, is defined on the pivots.
The pivot distribution is learned by diffusing their query similarities
through the graph. Unlike previous studies [5–12], our method ex-
plores the structure of pivots in a topological space and yields greater
robustness as regards query drift when false positives reside on dif-
ferent manifolds from the query. Against standard benchmarks, our
method consistently outperforms the state of the art techniques based
on handcrafted features with low parameter sensitivity.

Studies on shape retrieval [18–20] and Iscen et al.’s method [21]
apply diffusion globally to all database images. In comparison, our
method constrains diffusion semi-locally by the nearest neighbors of
the query, i.e., the pivots, and so avoids the potential coexistence of
different classes on a global manifold. This constraint also avoids
the need for an online overhead for updating a huge graph each time
an unseen query comes in. Our method is very efficient and provides
a practical query time of less than one second per 100K images.

2. PROPOSED METHOD

2.1. Query Expansion

Given a query q and a dataset X = {x1, . . . ,xn}, the goal of object
retrieval is to rank all the images in X by their probability p(x|q) of
having a common object with q. Hereafter, we replace the notation
p(x|q) with p(x) for simplicity.

Let s(·, ·) be a symmetric and positive similarity measure. We
denote images that are highly ranked by s(q,x) in a primary search
as z1, . . . , zm. We then have a set of pivots Z = {z0, z1, . . . , zm}
with z0 = q and m � n. The conditional probability of xi ∈ X
given zj ∈ Z can be defined by

p(xi|zj) =
s(xi, zj)∑n
i′=1 s(xi′ , zj)

. (1)

Suppose that we have obtained a distribution p(z) over Z indicating
the probability that z is relevant to q. We can obtain the probability
p(x) by marginalizing over p(z):

p(xi) =

m∑
j=0

p(xi, zj) =

m∑
j=0

p(xi|zj)p(zj). (2)
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Fig. 1. A query from Oxford5K and its positive and negative pivots
obtained with ASMK?. Some negative images are from the same
object class, validating the assumption in Section 2.2.

QE is realized in this way such that a database image is determined
as negative unless it is similar to the majority of pivots. The problem
now is how to appropriately define the distribution p(z) in Eq. 2.

2.2. Diffusion

We assume that 1) the pivots, which are on the same manifold com-
posing the majority of the pivot set, are more likely to be positive
and 2) visually similar pivots are more likely to have similar proba-
bilities of being positive. We can thus spread the query similarities
over the manifolds captured by the pivot set to learn the distribution
p(z). The above assumptions are usually reasonable since we have
constrained the diffusion semi-locally with the pivots. In this paper,
we mainly follow Zhou et al. [13] as regards diffusion.

We define an affinity matrix A = {aij} as aij = s(zi, zj) for
all zi, zj ∈ Z . A is constrained to have zero self-similarities such
that diag(A) = 0. It can be understood as the affinity matrix of a
weighted graph G with vertices Z . We then draw a degree matrix
D = diag((d0, d1, . . . , dm)>) from A, in which dj denotes each
column-wise sum of A. Let y = {yj} ∈ Rm+1 be an l1-unit vector
of query similarities with yj ∝ s(q, zj). The objective is to obtain a
weight wj for each zj , represented by a vector w = {wj} ∈ Rm+1.
This is formulated by minimizing the cost function in Eq. 3.

w? = argmin
w

(
1

2

m∑
i,j=0

aij

(
wi
di
− wj
dj

)2

+ µ

m∑
j=0

(wj − yj)2

dj

)
= β(I− αAD−1)−1y (3)

Here, µ is a positive regularization parameter, α = 1
1+µ

, β = 1−α,
and I is a unit matrix. The first term in the cost function formulates
the constraints of the assumptions described above; the second term
imposes a fitting constraint on the solution such that the optimized
w? does not vary greatly from y.

It is usual to approximate Eq. 3 with a power method [13] for
greater efficiency. Let P = AD−1. Let wt be the vector updated in
the t-th iteration and initialize w0 = y. We have

wt = αPwt−1 + (1− α)y. (4)

We directly define p(zj) = w?j and substitute it into Eq. 2 to give the
final ranking list of q. Since P is a column-wise normalized matrix
and y is an l1-unit vector, w? optimized by either Eq. 3 or Eq. 4 has
a ready interpretation as probability, satisfying ‖w?‖1 = 1.

In practice, the assumptions described above are reasonable in
almost but not quite all cases. Some negative images may occupy the
majority of pivots as shown in Fig. 1, and thus mislead the diffusion
into an irrelevant manifold. To handle such outliers, we incorporate

(a) Complete graph (b) Mutual k-NN graph (k = 30)

Fig. 2. A query from Oxford5K and its positive and negative pivots
connected in (a) a complete graph and (b) a mutual k-NN graph.
Edge thickness indicates ASMK? similarity and vertex size p(z)
learned with diffusion. The graph is generated using Gephi [22].

a local constraint in Section 2.3, and propose a mutual rank graph in
Section 2.4 to account for varying local density in the image space.

2.3. Local Constraint

We impose a local constraint [18] on the diffusion: only pairs of piv-
ots that are reciprocal (mutual) nearest neighbors are kept as edges
in the graph. Given a pivot z, let its k-nearest neighbors (k-NNs)
among X beNk(z). We then modify s(·, ·) such that

sk(zi, zj) =

{
s(zi, zj) if zi ∈ Nk(zj) and zj ∈ Nk(zi)
0 otherwise.

(5)

This modified similarity sk(·, ·) defines a mutual k-NN graph. In this
way, the risk that an irrelevant class coexists in the same manifold
with the query can be mitigated because different classes are usually
distributed in the image space with different scales. Figure 2 shows
an example where the mutual k-NN graph successfully separates a
large proportion of false positives from the query manifold. The
pivots surrounded by the pink circle establish a tightly settled sub-
manifold in Fig. 2a and are redundantly connected with other pivots.
Their weights are also greatly depressed in Fig. 2b by employing the
local constraint.

Since the probability p(x) for a database image is obtained by
marginalizing over p(z) instead of diffusion, imposing the local con-
straint on p(x|z) may lead to over-constrained QE. Hence, we keep
Eq. 1 unchanged and use sk(·, ·) only to construct A and y such that
aij = sk(zi, zj) and yj ∝ sk(q, zj).

2.4. Mutual Rank Graph

We have yet to mention the definition of s(·, ·). In the diffusion pro-
cess, a Gaussian kernel parameterized by a scaling factor σ is the
most widely used. When the data include clusters with different lo-
cal statistics, it becomes difficult to select a single σ that works well
for all the data. A toy example is shown in Fig. 3a where the green
and red circles are treated equally in terms of query affinity. Zelnik-
Manor and Perona [14] proposed defining a local scaling (LS) factor
for each datum in terms of its distance to its kσ-th NN. When in-
corporated in a mutual k-NN graph, the method shows significant
dependency on the neighborhood size k, resulting in unstable per-
formance as k increases.
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(a) Affinity as Gaussian kernel (b) Affinity based on mutual rank

Fig. 3. Points in descriptor space. Tied NNs of query are in red and
green. Dashed circles show their smallest discs containing the query.
(a) Affinity as Gaussian kernel treats the two points equally. (b) We
weight the green point more because of its higher mutual rank.

(a) Affinity as Gaussian kernel (b) Mutual rank graph

Fig. 4. A query from Oxford5K and its positive and negative pivots.
(a) ASMK? similarity and (b) the reciprocal of mutual rank are in-
dicated with edge thickness. Vertex size indicates p(z) learned with
diffusion. k = 30. The graph is generated using Gephi [22].

Instead of selecting a Gaussian kernel, we propose defining the
affinity between two images on the basis of their mutual rank. Let
r(zj |zi) be the rank of zj when the database X is queried by zi. We
can calculate an affinity sb(·, ·), indicating the bidirectional relation-
ship implied by mutuality:

sb(zi, zj) =

(
[r(zj |zi)]b + [r(zi|zj)]b

2

)−1/b

. (6)

This measure is actually the reciprocal of the generalized mean be-
tween r(zj |zi) and r(zi|zj). It gives an advantage to the affinity of
points with low local descriptor densities. As shown in Fig. 3b, our
method weights the green point more because it has a higher mutual
rank with respect to the query. The query affinity of the red point is
decreased because it resides in a more densely populated region and
is less tightly related to the query. Similar ideas have been used for
retrieval problems [10, 11], but not for diffusion to the best of our
knowledge. The reciprocal of Eq. 6 moves away from the geometric
mean toward the lower rank, i.e., the larger r value, for an increasing
b ∈ [0,∞). We focus on sb(·, ·) with b → ∞ hereafter because the
lower rank is more discriminating in suppressing outliers.

We incorporate Eq. 6 in Eq. 5, replacing s(·, ·) with sb(·, ·), to
construct A and y. A mutual k-NN graph is thus adapted to a mutual
rank graph, on which the distribution p(z) is learned with diffusion.
Figure 4 compares the two graphs. The pivots surrounded by the
pink circle are underrated in Fig. 4a because of their smaller query
similarities. However, the mutual rank graph in Fig. 4b successfully
captures their low local image-space densities and greatly increases
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Fig. 5. Impact of k used in mutual k-NN andm as number of pivots.
(a) kσ = 190 for LS and m = 100 for all methods. (b) k = 20 for
LC, k = 20 and kσ = 190 for LS, and k = 30 for MR.

their weights such that these positive pivots can contribute more to
QE. The reciprocal of mutual rank sb(x, z) is also employed in Eq. 1
to provide higher discriminative power.

3. EXPERIMENTS

3.1. Experimental Setup

We used three benchmarks that are widely used in image retrieval:
Oxford5K [23], Oxford105K [23], and Paris6K [24]. Mean average
precision (MAP) was used as a performance measure for all datasets.

An aggregated selective match kernel (ASMK?) [25] was em-
ployed as the primary image similarity. The visual vocabulary of
Oxford5K was trained on Paris6K and vice versa. We did not inves-
tigate the compatibility of our method with other metrics, but any
state-of-the-art image representations, e.g., CNN features [28, 29],
can be used here. The damping factor α is always 0.99 as in the
work of Zhou et al. [13]. 30 iterations were found to be sufficient for
the power method to yield a good solution.

During the offline stage, ASMK? similarities s(·, ·) and unidi-
rectional ranks r(·|·) between all x ∈ X were computed in advance.
The similarities were represented by a set of n sorted lists, each hav-
ing a length of n. We thus have two n × n intermediate matrices.
On a large scale, e.g., for Oxford105K, we truncated the matrices,
only keeping the 5,000 NNs for each x to realize a lower space re-
quirement. To conduct an online search, the similarities between the
query q and all x ∈ X were computed and m pivots were selected.
The affinity matrix A and the vector y were constructed with Eqs. 5
and 6 for diffusion. The conditional probabilities p(x|z) could be
easily obtained from the rank matrix except for z0: we approximated
sb(q,x) by assuming r(q|x) = 1 for lower online cost.

3.2. Parameter Investigation

We varied k used in the mutual k-NN graph and the number of pivots
m, and evaluated the performance for different configurations. Re-
sults for Oxford5K are shown in Fig. 5. Here, DP realizes QE with a
diffusion process on a complete graph where the edges are weighted
by ASMK? similarities; LC [18] replaces the complete graph with
a mutual k-NN graph; LS weights each edge with a locally scaled
Gaussian kernel [14], in which the Euclidean distance is substituted
by the negative log-likelihood of the ASMK? similarity; MR weights
each edge with the reciprocal of mutual rank, which corresponds to
our method.
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Table 1. Comparison with studies based on local features. Results based on our reimplementation are marked with †, otherwise they are from
original papers. SP indicates spatial verification. The previous highest and our highest MAPs are underlined and shown in bold, respectively.

QE SP m
MAP (%)

Oxford5K [23] Oxford105K [23] Paris6K [24]

ASMK? [25]† 7 7 – 80.3 74.9 77.1

HQE [12] 3 7 100 83.8 80.4 82.8
Mikulı́k et al. [26] 3 3 ∼ 50 84.9 79.5 82.4
Qin et al. [27] 3 7 – 85.0 81.6 85.5
ASMK?+SCSM [11]† 3 7 100 85.0 82.0 84.4
i-ASMK?+HQE [25] 3 7 100 86.9 85.3 85.1
HQE-SP [12] 3 3 100 88.0 84.0 82.8

ASMK?+DP-LC-MR 3 7 25 88.8 87.1 85.6
ASMK?+DP-LC-MR 3 7 50 89.3 88.0 87.3
ASMK?+DP-LC-MR 3 7 100 90.1 88.6 89.0

Fig. 6. Query examples from Oxford5K and Paris6K and difficult instances low-ranked by ASMK?, i.e., the baseline. Precision at the position
where each instance is retrieved is shown under each instance for ASMK? without and with our QE method.

As shown in Fig. 5a, the performance stays stable over a wide
k range for LC and our method. In comparison, LS is very sensi-
tive in terms of this parameter. Considering the additional parameter
kσ , which also has to be tuned, LS is difficult to generalize for dif-
ferent data. In Fig. 5b, DP suffers from significant query drift as
m increases, justifying our motivation for the incorporation of the
stronger local constraints described in Sections 2.3 and 2.4. LC by
itself already solves a major part of this problem. Combining it with
the mutual rank graph provides yet another substantial improvement
in MAP of up to 5%. For Oxford5K, the precision of ASMK? at the
position where the 100th pivot is selected is 32.7% on average with
a minimum value of 6%. Even with so few positives in the pivot set,
our method still achieves a long-lasting improvement, demonstrat-
ing its great robustness as regards query drift. We did not tune the
parameters on Oxford105K or Paris6K but simply set k = 30 for the
rest of this paper.

3.3. Comparison

We compared our method with the state-of-the-art techniques based
on handcrafted features. Table 1 summarizes the results, where the
previous highest MAPs are underlined. With only 25 pivots, our
method already outperforms all other methods in all datasets. More-
over, our method does not rely on spatial verification, which usually
involves additional online costs. Figure 6 shows qualitative results
revealing that images benefit from our method mainly when they
vary from the depicted object with large illumination and viewpoint
change. For Oxford105K, our method took 19.2 hours for database

side ASMK? computation and 48 minutes for sorting and truncation.
Both of these processes were finished offline and can be performed
in parallel for increased speed. The query time with the same dataset
is 1.33s on average for a primary search based on ASMK? and 0.76s
for QE with 100 pivots. These experimental results demonstrate the
great scalability of our method.

4. CONCLUSION

We proposed a QE method that handles the danger of query drift by
investigating manifolds of pseudo-relevant images in a topological
space. The method yields greater robustness than previous studies
especially when false positives reside on different manifolds from
the query. We show experimentally that it is less parameter-sensitive
and consistently outperforms state-of-the-art techniques based on
handcrafted features. Our method is scalable since no large-scale
matrix manipulations or iterations are required online. Unlike previ-
ous studies [5–7, 12] that realize QE at the feature level, our method
does not depend on specific image representations. As a future task,
we shall verify this experimentally and investigate the compatibility
of our method with recent CNN descriptors [28, 29].
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