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ABSTRACT 

 

Over the past few years, fast and robust trackers based on 

Kernelized Correlation Filters have shown top notch performance 

on the Visual Object Tracking challenge. However there is still 

scope for obtaining higher performance through the use of 

reasonable approximations that can easily be shown to work 

through empirical methods. We study some variants derived from 

the Discriminative Scale Space Tracker and show significant 

improvement in tracking performance. Our tracker outperforms 

both fDSST and DSST on the VOT 2016 and 2017 datasets in 

terms of both Expected Average Overlap (EAO) and Equivalent 

Filter Operations (EFO). We also demonstrate that the error 

correcting capability inherent in our method leads to a higher 

performance on the unsupervised VOT 2016 and 2017 

benchmarks. 

 
Index Terms— Object Tracking, Kernelized Correlation 

Filter, Discriminative Scale Space Tracker 

 

1. INTRODUCTION 

 

Visual object tracking, especially the model free variant using 

tracking-by-detection has come a long way from the primitive 

methods based on template matching to correlation filters using 

multiple high level features. These methods are invariant to most 

of the commonly occurring phenomena like illumination changes, 

deformations, occlusions and rotations that make tracking 

challenging [4]. Over the years, even the tracking benchmarking 

measures have moved from the naive Distance Precision (DP) 

[3,6,19], Center Location Error(CLE) [6], Average Overlap (AO) 

[6,20] and others [8,9,10,34,35,36] to Accuracy, Robustness and 

EAO, which are proposed in Visual Object Tracking (VOT) 

challenge [7] (currently the largest and most challenging 

benchmark for short-term-single-object trackers that do not apply 

pre-learned object appearance models [7]). VOT also proposed a 

benchmark for speed performance termed EFO [21].  

Most of the state-of-the-art methods, like CCOT [22], TCNN 

[23], SSAT [7,24], an extension of MDNet [24], MLDF [7,26,27], 

Staple [15], DNT [28], SSKCF [7,29,4],   SiameseFC [14] and 

DeepSRDCF [7,30], use either some form of multilevel features or 

deep neural network based features and are hence very slow in 

operation. The best tracker in terms of EAO in VOT2016 [7] is 

CCOT, which is based on a Continuous Convolution Operator; it 

extends  DCF [4] to learn multi-resolution deep feature maps by 

using an interpolation function, thus enabling sub pixel estimates 

of the object location and it runs at 0.55fps [31]. TCNN uses 

multiple CNNs to model the object appearance and runs at 1.5fps 

using an i7-5820K and TITAN X [23]. SSAT, Scale and State 

aware tracker is an integration of image segmentation into MDNet, 

which in turn uses a Multi-Domain Network, where separate 

branches of the neural net are fine tuned for multiple domains 

(object types) in the tracking dataset and this runs at 1fps on an 8 

core XeonE5 along with a TeslaK20m GPU [24]. Multi-Level 

Deep Feature (MLDF) Tracker uses VGGnet [32] features  to train 

separate networks for localization and scale estimation and is again 

slow [7]. DNT or Dual Deep Network Tracker also uses pre-

trained Deep features and is slow [7]. Such methods, despite their 

stellar performance on the VOT 2016 benchmark, perform poorly 

on the VOT 2017 real time challenge where the trackers are run on 

the sequences with real time frame rates [38]. Here faster trackers 

have a significant advantage in performance [33]. 

For real time tracking, speed is very essential and most of the 

fast methods currently in use are based on the Kernelized 

Correlation Filter (KCF) framework that exploits the circulant 

nature of the kernel matrices involved in densely sampled tracking-

by-detection algorithms [1,2,3]. It’s an approach that has been 

adapted from the Minimum Output Sum of Squared Error 

(MOSSE) [1]. The tracking problem is framed as a minimization of 

the sum of squared error with respect to a gaussian response. This 

in turn simplifies into a ratio, where the numerator is the 

correlation of the input with the gaussian and the denominator is 

the energy spectrum of the input. To adapt this into an online 

learning framework, a running average is performed on both the 

terms of the ratio for every frame with a suitable learning rate [2]. 

Henriques et al. generalize this further by incorporating the Kernel 

Trick, producing a kernelized correlation filter. Further they use 

HoG features [13] which provide higher immunity to noise. 

Discriminative Scale Space Tracking (DSST) [6] is one approach 

to incorporate scale tracking into KCF. It is built upon the KCF 

framework, with the HoG feature being replaced by fHoG features 

[16]. A separate scale filter, which consists of the target features 

extracted at 33 different scales is used along with the same KCF 

approach to track the object in this constructed scale space. 

Danelljan et al. further improve this in terms of speed and distance 

precision with the fast DSST (fDSST) [11] by using   

dimensionality reduction via PCA and sub-grid interpolation in 

both the scale and spatial filters. Along with this they also extend 

the search space by using a higher padding. fHoG is  applied with 

4x4 bin size to reduce the spatial extent of the filter by a factor of 

4. Thereafter, PCA is used to reduce the 32 channel 

fHoG+grayscale image feature to 18 channels. This significantly 

reduces computation despite the increased search space. Sub-grid 

interpolation is used to estimate the location at 4x the spatial filter 

size and scale at 2x the scale filter size (scale estimation at 33 

levels is obtained using only 17 scales). One of the motivations for 
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the proposed work lies in the fact that a separate scale filter is quite 

expensive computationally and can be avoided. 

KCF has been adapted by several other authors as well, such as 

Scalable Kernel Correlation Filter with Sparse Feature Integration 

(sKCF)[37], which is an improved KCF tracker that uses a scalable 

gaussian window and a keypoint based model and is able to 

overcome the fixed size limitation in KCF. Adaptive Regression 

Target DSST is an extension of DSST with an anisotropic gaussian 

regression target that helps it handle oblong objects better than the 

original DSST [7].  

 

 

 

 
Fig. 1: Proposed error correction algorithm: a) White box: object 

to be tracked. Yellow box: 1.0 padding patch. Green box: 1.5 

padding patch. b) 31 channel fHoG features along with grayscale 

image feature extracted from patch c) Feature matrices reduced to 

18 channels from 32 via PCA. d) Multiplication in Fourier domain 

e) Response resized to original patch size. f) Responses in spatial 

domain. 

 

Another approach including scale estimation built upon KCF, 

Scale Adaptive KCF Tracker with Feature Integration (SAMF) [5] 

by Li et al computes the filter responses at multiple scales. These 

trackers are simple, fast and accurate but their performance can be 

improved upon as done by the proposed tracker which is detailed 

in the following section. 

 

2. PROPOSED METHODOLOGY 

 

Since most of the above discussed trackers have a low frame rate 

[7,33], we propose two simple modifications to fDSST, 1) double 

correlation filters which make the tracker robust to failure and 2) 

sequential scale estimation that can help handle scale changes 

efficiently. The first modification which provides error correction 

makes use of filters with paddings 1 and 1.5, termed K1 and K1.5 

respectively. Having a larger padding filter has its pros and cons. It 

can lead to more background leaking into the filter, making it more 

likely to lose track in cases with cluttered background, partial 

occlusions and rapid deformations in the object. Whereas filters 

with smaller padding tend to lose track of the object during phases 

of fast movement. Hence using filters of different sizes can be 

complementary. The two filters are used simultaneously to track 

the object giving two target location estimates pos1 and pos2 as 

shown in Fig. 1a. The error correction is achieved by evaluating 

the filters at both locations at every time step, which results in 

responses R11, R12, R21 and R22. Where R11 is the response of filter 

1 at pos1, R12 is the response of filter 1 at pos2 and so on.  

 

 
Fig. 2: An example of error correction: The green box is ground-

truth and the black box is the proposed tracker. The tracker loses 

the target while transitioning from 2a to 2b. Consecutively, while 

transitioning from 2c to 2d it regains the target. 

Pseudo codes for train, update and detect are similar to the ones 

presented in [11]; the error correction methodology is explained in 

the pseudo code below. 
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function [pos1, pos2] = Error_correction(R11, R12, R21, R22, pos1, 

pos2, noise_threshold = 1.05) 
if max(R12(:)) > max(R11(:)) × noise_threshold  

//threshold used to avoid switching due to noise 
                 pos1 = pos2; 
        elseif   max(R21(:)) > max(R22(:)) × noise_threshold 

                 pos2 = pos1; 

        end 

end 

 

The above discussed algorithm is presented in Fig. 1 where filter 

K1.5 fails while K1 continues tracking (refer Fig 1a). In the 

successive frame K1.5 corrects using the location estimate of K1 

because R21 is higher than R22 (refer Fig 1f). An example of this is 

demonstrated in the Fig. 2. 

 

 

Fig. 3: Proposed methodology for fast scale estimation. 

The second modification is the use of a scale factor in {0.98, 1.0, 

1.02} for scaling the target area on consecutive frames for the 

translation filter. The translation filter is then used to estimate scale 

without using a separate scale filter. The use of separate scale 

filters in fDSST (Fig. 3a) and SAMF are computationally costly 

and redundant. In our approach the scale responses are computed 

in different frames [sequentially] as shown in Fig. 3b. The 

responses of a filter for each of the three scales (R22
1, R22

2 and R22
3, 

where superscript indicates the frame index) can be compared 

across frames under the assumption that changes between 

consecutive frames are not significant. 

The pseudocode for the above method is as follows: 

function base_scale = scale_estimation (R22
1, R22

2, R22
3, 

base_scale, scale_factor)   
        idx = argmax ([R22

1, R22
2, R22

3]);   

        base_scale =  base_scale × scale_factor(idx) 

end 

 

These two modifications enable us to achieve both higher EAO as 

well as a higher speed compared to the state-of-the-art as detailed 

in the next section. 

 
3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

For evaluation we have used the publicly available VOT 2016 and 

2017 datasets [7,38] each consisting of 60 videos which exhibit a 

range of challenging situations. Parameters that we use for 

benchmarking our proposed tracker are Accuracy, Robustness, 

EAO and EFO. Accuracy is merely the average overlap in all 

frames where tracker has not failed. Robustness is the average 

number of failures per sequence. EAO is the average of the 

expected overlap curve evaluated over an interval of average short 

term sequence lengths without resets [8]. EFO is intended to be a 

system independent measure of tracker speed [7,8]. In the VOT 

‘baseline’ (B) experiment, the tracker is reset upon a failure 

condition to ensure that the measures are independent of sequence 

lengths [7]. Since the proposed tracker has an error correct 

capability, to ascertain the effectiveness of error-correction we 

performed the ‘unsupervised’ (U) experiment, where the tracker is 

initialized only once at the beginning. In addition, to demonstrate 

the real time effectiveness of our tracker we also performed the 

‘realtime’ (R) experiment on the VOT 2017 dataset. 

To demonstrate the advantages of each modification we start 

with a baseline tracker that uses MOSSE with fHoG features along 

with PCA as implemented in fDSST but without the scale filter.  

The tracker thus obtained we call MOSSE++i where superscript ‘i’ 

indicates the padding size employed in the tracker. In this 

experiment we have studied the effect of padding 1 (used in DSST) 

and 1.5 (used in KCF). We have added the scale estimation to both 

the trackers described above as MOSSE++Scalei. The proposed 

tracker combines both MOSSE++Scale1 and MOSSE++Scale1.5. A 

comparison of these is shown in Table 1. 

Table 1. Performance comparison with trackers having different 

padding size with and without scale estimation on VOT 2016.  

Tracker EAO (U) EAO (B) 

MOSSE++Scale1 0.419 0.168 

MOSSE++1 0.412 0.159 

MOSSE++Scale1.5 0.364 0.157 

MOSSE++1.5 0.333 0.150 

Proposed 0.454 0.195 

 

These results show that the EAO improves from 0.159 to 0.195 for 

the proposed tracker, when compared to the baseline tracker 

MOSSE++1. Improvements due to the scale addition can be clearly 

seen as it has improved EAO from 0.333 (MOSSE++1.5) to 
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*fDSST code for this experiment was obtained from www.cvl.isy.liu. 

se/en/research/objrec/visualtracking/scavistrack/fDSST_code.zip  

0.364 (MOSSE++Scale1.5). Effect of padding size can also be 

observed (keeping scale fixed to a constant size). When padding is 

reduced from 1.5 to 1 the EAO increased from 0.333 

(MOSSE++1.5) to 0.412 (MOSSE++1). One probable explanation 

is the leaking of background noise into the higher padding filter. 

The proposed tracker which combines both the filters along with 

the scale has the highest EAO 0.454. This effect can be seen in the 

Fig.4, where MOSSE++Scale1, shown in Fig.4.a,b,c., has failed; 

MOSSE++Scale1.5, shown in Fig.4.d,e,f, has also failed. However 

the proposed tracker succeeds, as shown in Fig.4.g,h,i. 

 

 
Fig. 4: Resilience of tracker using two filters (g,h,i) compared with 

trackers using a single filter (a,b,c and d,e,f). Green box is ground 

truth and yellow corresponds to tracker estimate. 

A second set of experiments demonstrate the advantages derived 

from our combined approach in comparison with VOT 2016 

results of DSST2014 and KCF2014, along with the generated 

results of the publicly released fDSST code*. KCF2014 is an 

upgraded version of KCF with multi-scale support and sub-cell 

peak estimation [7].  Table 2 shows the performance measures 

achieved for the experiment, together with performance of the 

existing state-of-the-art techniques. As seen in this table, our 

approach achieves higher EAO and EFO than DSST, fDSST and 

even KCF2014. 

Table 2. Performance comparison with other correlation based 

trackers submitted in VOT 2016 [7] 

Tracker R A EAO (B) EFO 

KCF2014 1.95 0.48 0.192 21.79 

SAMF2014 1.91 0.50 0.186 4.01 

DSST2014 2.38 0.52 0.181 12.75 

ART_DSST 2.51 0.50 0.167 8.45 

sKCF 2.86 0.48 0.153 91.06 

fDSST* 2.64 0.49 0.164 13.02 

Proposed 2.03 0.48 0.195 42.51 

The third set of experiments demonstrate the performance 

improvement obtained on the VOT 2017 benchmark in comparison 

with DSST and fDSST only, as the other trackers from VOT 2016 

have not been evaluated in VOT 2017 [38]. As can be seen in 

Table 3 the proposed tracker achieves higher EAO on all three 

experiments (baseline, realtime and unsupervised) of the VOT 

2017. These clearly demonstrate the improved error correction and 

speed of the tracker when compared with DSST and fDSST. 

Table 3. Performance comparison with other correlation based 

trackers on VOT 2017 [38] 

Tracker EAO (B) EAO (R) EAO (U) 

DSST 0.079 0.077 0.256 

fDSST* 0.099 0.088 0.346 

Proposed 0.116 0.113 0.399 

Finally, Table 4 shows that on VOT 2017, the proposed tracker 

significantly outperforms the top trackers (from the baseline 

challenge) on the realtime challenge because those trackers are 

slow due to the use of deep neural network features or multilevel 

features [38][33]. Evidently these are highly suitable for offline 

tracking but their performance drops drastically for real time 

tracking leading to the proposed tracker having better EAO in real 

time. 

Table 4. Performance comparison with the top performers 

submitted in VOT 2017 [38] 

Tracker EAO (Baseline) EAO (Realtime) 

LSART 0.323 0.055 

CFWCR 0.303 0.062 

CFCF 0.286 0.059 

ECO 0.280 0.078 

Gnet 0.274 0.060 

MCCT 0.270 0.060 

CCOT 0.267 0.058 

Proposed 0.116 0.113 

Hence the highlight of our approach is the improvement in speed, 

~3x with respect to DSST and the error correction method making 

our algorithm more robust and suitable for real time tracking. 

 

4. CONCLUSION 

 

In this paper we have proposed a new methodology for tracking 

using multiple correlation filters which enables us to not only track 

objects in real time but also correct for errors made in the past by 

combining the information from multiple trackers in the light of 

newer frames.  The traditional scale handling approach has also 

been sped up. This methodology has been evaluated on the VOT 

2016 and 2017 benchmarks and it has been found that significant 

improvements are obtained in speed along with gains in 

performance in challenging sequences involving partial occlusions, 

deformations and out of plane rotations. In future we plan to 

investigate the applicability of the proposed algorithm in other 

methodologies like Staple and FSRDCF. We also plan to integrate 

object in-plane rotation handling.  
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