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ABSTRACT 

 

Hard shadows detection and removal from foreground masks 

is a challenging step in change detection. This paper gives a 

simple and effective method to address hard shadows. There 

are inside portion and boundary portion in hard shadows. 

Pixel-wise neighborhood ratio is calculated to remove the 

most of inside shadow points. For the boundaries of shadow 

regions, we take advantage of color constancy to eliminate 

the edges of hard shadows and obtain relative accurate 

objects contours. Then, morphology processing is explored 

to enhance the integrity of objects. The main contribution of 

this paper is to design an approximate estimation strategy for 

illumination invariant based on Lambertian reflectance 

model without prior knowledge. The proposed method is 

unsupervised and experimental results on six challenging 

sequences show the effectiveness and robustness of our 

approach.  

 

Index Terms— Hard shadows, Illumination invariant, 

Lambertian reflectance, Color constancy 

 

1. INTRODUCTION 

 

In surveillance application scenes, moving cast shadows are 

generated when illumination source is partially or totally 

occluded by moving objects in the field of change detection 

[1]. According to the extent of darkness, shadows can be 

divided into two categories: weak (or soft) shadows and hard 

(or strong) shadows [2]. Due to the lack of illumination 

source and low values of incoming energy, hard shadow 

regions often have the lowest intensity among image pixels 

[3]. Moving shadows usually share same motion property 

with moving objects and have obvious discrimination from 

corresponding background. This easily results in occurrence 

of shadows misclassification as objects [4,5] and distorted 

object contours, multiple objects merging. etc. Most of 

background subtraction methods have difficulty in handling 

hard shadows although some can suppress weak shadows. 

Therefore, algorithms or approaches aimed at removing hard 

shadows need to be developed independently.  

Many shadow detection methods were proposed and 

surveyed in [5-8]. These algorithms are based on one or 

several certain assumptions about shadow properties but not 

limit to: (i) shadow regions are darker than the correspond-

ing background but the color and texture information does 

not change significantly (also called color constancy and 

texture consistency); (ii) the shadow is adjacent to the mov-

ing objects; (iii) both the direction and strength of the illu-

mination source are known; (iv) the shadow falls on ground 

plane.  For shadows occurring in indoor conditions, it seems 

not hard to detect them because the assumptions are always 

easy to be satisfied. Various color-based [5,9,10,11,12], 

edge-based [13,14], texture-based features [15-19], multiple 

features fusion [20-23] and other methods or techniques [24-

30] were given and they have achieved good results. But 

these methods face challenge on handling hard shadows 

occurring in outdoor conditions since it is difficult to meet 

some certain assumptions for the complex scenes, for 

example, the color or texture information is less and shad-

ows even dark to black. Recent techniques using convolu-

tional deep neural networks [29] or generative adversarial 

networks [30] were explored to remove shadows from single 

image. They achieved good performance with complex 

network design, which might be time-consuming and not 

suitable for the fast removal of moving shadows.   

      Our motivation is to design an approach to remove hard 

shadows from foreground masks. Two problems should be 

issued mainly: (a) shadow camouflage happens when shad-

ow-foreground discrimination is little, (b) object and back-

ground have high similarity. To address these issues, we 

present a framework depending on illumination invariant 

[31] and color constancy [5]. Hard shadows can be divided 

into two parts: the inside and the boundary. The inside shad-

ows are much darker than corresponding background while 

the shadow boundaries are changing areas from background 

to shadow whose textures change significantly but the chro-

maticity remains unchanged. According to the characteristics 

above, our strategy is to deal with the inside parts using 

illumination invariant and remove the boundary parts by 

color constancy, following by a morphological methodology 

that only rely on objects’ contours. The experiments are 

performed on six typical outdoor scenes of hard shadows. 

Six methods, as the representative of the-state-of-the-art, is 

compared with the proposed method. The comparison 

results demonstrate our method’s effectiveness.    
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Fig.1.  Flowchart of the proposed method. 

 

2. SYSTEM OVERVIEW 

 

The proposed method requires three inputs for each frame in 

sequences (see Fig.1. (a), (b) and (c)): 1) Frame as the cur-

rent image in sequences; 2) Foreground as the mask of 

detected changes; 3) Background that is generated from 

background subtraction or other methods. In this paper, sup-

posing that three inputs are given in advance.    

      Firstly, the approximate illumination invariants of input 

frame and background are estimated by the proposed illumi-

nation invariant estimator (see Fig.1. (d) and (e)). The 

neighborhood ratio between the illumination invariants of 

frame and background is calculated to discriminate object 

from shadow (see Fig.1. (g)). It can be seen from Fig.1. (g) 

that the edges of hard shadows are misclassified as objects, 

which will be processed individually.  

Then the input foreground is used to detect the outlines 

of connected regions (see Fig.1. (f)). By color constancy 

method based on HSV color space [5] we discriminate 

shadows’ boundaries from objects’ boundaries (see Fig.1. 

(h)). Finally, post-processing with morphological operation 

is operated to fit the objects’ contours and produces the 

desired mask (the red) and shadows (the blue). In the 

process, our method is unsupervised, which is more capable 

of adapting to complex scenes.   

 

3. THE PROPOSED METHOD 

 

In this section, we give hard shadows removal algorithm. 

Hard shadows are those points that have low intensity, much 

darker than corresponding background and lack of color and 

texture information. Mostly in outdoor scenes, the strong 

illumination source creates a high brightness environment 

for scenes. But the brightness of umbra belonging to hard 

shadows is mostly affected by ambient light other than illu-

mination source. Generally, the ambient light is much weak-

er than illumination source. Due to the weakness, shadows 

tend to be darker, while the reflectance of shadow regions 

changes little. In this paper, it is assumed that the reflectance 

is scattered reflection according to Lambertian reflectance 

model [32]. Therefore, the surface reflectance is a good 

property as illumination invariant feature.  

 

3.1. Illumination invariant estimator 

 

According to Lambertian reflectance, any pixel of an image 

obtained from fixed and static scene can be described by a 

simple luminance model [4,11]: 

L(x) = I(x) R(x) (1) 

where L(x) = [LB(x), LG(x), LR(x)]T is the illumination vector 

of RGB color space at pixel x. I(x) = [IB(x), IG(x), IR(x)]T is 

the irradiance vector of the illumination source and R(x) = 

[RB(x), RG(x), RR(x)]T is the reflectance vector of surface at 

the pixel x. Assuming the irradiance component given, the 

intrinsic reflectance property of objects and background can 

be expressed by: 

R(x) = L(x) / I(x) (2) 

L(x) can be acquired by standard RGB camera while I(x) 

cannot be gained directly and should be estimated approxi-

mately. The shadow irradiance of input signal for one illu-

mination source can be described by [33]: 

I(x) = Ca + Cb cos(θ(x))ϛ(x) (3) 

where Ca, Cb and θ(x) represent the intensity of ambient 

light, the intensity of illumination source and the angle 

between the direction of illumination source and the normal 

vector of surface, respectively. The term 0≤ϛ(x)≤1 describes 

the transition inside the penumbra or umbra, when ϛ(x) 

equals to zero, the shadow is only affected by ambient light 

and belongs to umbra.  

      For hard shadows, the points of inside region mostly 

belong to umbra while the points of boundary region tend to 

belong to penumbra. The division line or points between 

penumbra and umbra is not fixed and rigid under various 

and complex scenes, which is difficult to define the accurate 

positions. This is because that neighboring pixels in shadow 

regions tend to have spatial consistency and influence each 

other a lot. Therefore, we process penumbra and umbra 

together with the same strategy. For pixel x in shadow region, 

the intensity of illumination source should be greater than or 

equal to L(x). For this reason, we carry out a selection policy 

from its neighboring pixels to calculate an approximation 

value of the irradiance I(x).  

Imax(x) = max (L(t)), Imin(x) = min (L(t)), t є W  (4) 
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α = (Imax(x) − Imin(x))/ Imax(x) (5) 

I(x) ≈ Imax(x) ∙ (1 − α) + Imin(x)∙α + є (6) 

In Equation (4), W represents the neighboring window of 

pixel x in RGB color space. The Imax(x) and Imin(x) represent 

the maximum and minimum values in W, respectively. In 

Equation (5), α is defined as the fusion factor of illumination 

correction that is used to overcome the underestimate of 

single illumination source for quick changing areas. In Equa-

tion (6), є is the adjust factor to ensure that the estimation 

value I(x) is greater than or equals to L(x). An example of 

visual results of illumination invariant is shown in Fig.1. (d) 

and (e).  

 

3.2. Neighborhood ratio calculation 

 

This step is based on the results of illumination invariant 

estimation from section3.1. Compared to the calculation of 

single pixel, a small neighborhood region (eg, 3 3  patch) is 

more robust to light changes. The formulation is defined as: 

1, | ( ) ( ) |
( )

0,

c bif I x I x
x

otherwise

  
  



 
(7) 

 

where Ic(x) represents the illumination invariant of current 

frame at pixel x position, Ib(x) is the illumination invariant of 

corresponding background point and λ is the range threshold 

parameter. The shadow point is determined by: 
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(8) 

 

where τ is the determination parameter of neighborhood 

ratio. This step makes a rough determination to discriminate 

shadow from object (see Fig.1. (f)).  

 

3.3. Boundary detection 

 

It can be seen from Fig.1. (g) that the boundaries of hard 

shadows are easily misclassified as objects by neighborhood 

ratio calculation. Due to the penumbra points are distributed 

in the light changing areas from background to shadow, they 

are lighter than the inside parts of hard shadows. To correct 

the misclassification, we take advantage of color constancy 

techniques to detect boundaries according to the size of con-

nected region. The larger the size of connected region is, the 

wider the boundaries are. This is because that in terms of 

small objects, its boundaries account for a high percentage 

of the whole connected region. In practice, the upper limit of 

boundary width with three pixels may provide satisfactory 

results. If the contour size of a connected region (CSCR) is 

more than one-third of the sum of frame’s height and width, 

the boundary width is set to three pixels. If CSCR is less 

than one-fourth of the sum of frame’s height and width, the 

boundary width is set to one pixel. In other situations, the 

boundary width is set to two pixels.  

3.4. Removal boundaries of shadows 

 

For every connected region, the boundaries consist of object 

points and shadow points. The shadow points mostly belong 

to penumbra and reserve the chromaticity information, 

which is to coincide with the assumption of color constancy, 

while the object points are not. Therefore, we choose to 

utilize HSV color space to detect the edges of shadows. It is 

because that HSV color space with fast processing speed [5] 

and has revealed the accuracy in distinguish shadows from 

objects. Then most boundaries of shadows can be removed 

from object regions (Fig.1. (g)). 

      In addition, the post-processing process is also of 

importance to maintain the structure and contours of real 

objects. In this paper, it is performed by polygonal fitting 

operation and convex hull operation.  

 

4. EXPERIMENTAL RESULTS 

 

To validate the proposed method’s effectiveness, six typical 

and challenging sequences from [1,7,26] are used to test 

shadow detection methods. They are all outdoor scenes. It 

should be noted that Seam, Senoon and Sepm are three 

sequences from the same camera with different time. These 

are typical real application with hard shadows. For fairness 

and respect to the original authors, the parameters of com-

pared methods are kept in default given by their papers. In 

our method, only λ and τ need to be considered globally and 

set since multiple scenarios are included. Selecting a higher 

value than λ=23 or lower value than τ=0.6 may provide a 

better shadow detection, but it will lead to misclassification 

that object points are classified as shadow class. Visual 

results and quantitative comparisons are both presented in 

Fig.2., Fig.3., Table 1 and Table 2.  

      Figure 2 shows visual results of the proposed method. It 

can be seen from the figure that hard shadows with diverse 

direction and strength changes can be detected accurately. 

The contours and insides of objects are retained in a relative 

complete way. The quantitative results are reported in Table 

1 and Table 2 and evaluated by shadow detection ( ) and 

shadow discrimination ( ) [5,23] as follows: 

2
, ,S F

S S F F

TP TP
F measure

TP FN TP FN





 
   

  
 

(9) 

where TPS and FNS are the true positives and false negatives 

for shadows, TPF and FNF are the true positives and false 

negatives for objects. The proposed approach achieves much 

higher shadow detection rate than other methods in the five 

sequences except HighwayI scene in Table 1 and the shadow  

discrimination rate of our method is also high (Table 2). For 

Bungalows scene, the shadow detection rates of compared 

methods are lower than 70% while ours is more than 90%. 

The compared methods show the instability in handling hard 

shadows, for instance, LR method [7] could detect shadows 

in  three  sequences  with  only  over  40%. Multiple features  
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Fig.2.  The visual results of our method. (a) input frame. (b) 

ground truth manually. (c) the blue represents objects and 

the red represents hard shadows, individually. 

 

Table 1. Shadow detection rates on six sequences 

 % 
Chr 

[5] 

Geo 

[24] 

Phy 

[10] 

SR 

[15] 

LR 

[7] 

MFF 

[23] 

Our

s 

Bungalows 1.1 59.8 13.3 2.2 62.6 3.2 90.9 

BusStation 56.1 25.1 40.1 58.4 49.2 75.0 93.8 

HighwayI 90.5 71.0 45.1 25.1 74.7 69.2 88.2 

Seam 19.2 57.4 56.0 69.1 22.7 73.4 99.6 

Senoon 18.4 53.4 64.9 3.2 4.8 48.8 95.6 

Sepm 46.7 60.3 35.5 35.5 18.8 58.4 95.8 

 

Table 2. Shadow discrimination rates on six sequences 

 % 
Chr 

[5] 

Geo 

[24] 

Phy 

[10] 

SR 

[15] 

LR 

[7] 

MFF 

[23] 

Our

s 

Bungalows 78.9 55.4 92.5 81.8 69.1 95.6 92.1 

BusStation 83.7 70.8 94.7 85.7 94.0 91.2 88.9 

HighwayI 54.2 74.7 83.9 88.0 82.9 85.6 90.1 

Seam 59.9 64.6 87.1 67.7 79.1 77.7 72.8 

Senoon 59.2 58.4 81.7 86.3 98.2 60.4 85.3 

Sepm 66.9 63.1 86.6 79.7 98.1 85.6 78.9 

 

 
Fig.3. The comprehensive quantitative results of seven 

methods on six sequences. 

 

fusion [23] obtains relative high shadow detection rate in 

five scenes but not in Bungalows scene. What needs to be 

pointed out is that the high rates of the ( %) and (  %) 

simultaneously verify the effectiveness of shadow detection 

methods convincingly. It can be seen clearly from Fig. 3. 

that our method outperforms the-state-of-the-art methods by 

comprehensive metric (F-measure) in all the sequences.  

      In addition, our algorithm has been implemented in C++ 

and processes 50~60 frames a second for a 360 240  reso-

lution frame. The algorithm has been tested on a 3.5GHz 

Xeon machine with memory size of 8G. After optimization, 

the time consumption can be reduced further. 

 

5. CONCLUSION 

 

In this paper, a simple, effective approach of removing hard 

shadows is proposed. It is unsupervised and without prior 

knowledge. Visual and quantitative results validate the 

proposed method’s effectiveness and robustness. The most 

important innovation of this paper is the introduction of 

illumination invariant and estimation by spatial information. 

Based on estimating illumination with pixel neighboring, the 

inside part of shadows is detected by the illumination invari-

ant that is expressed in an approximate way. The boundary 

part of hard shadows is removed by the method of HSV 

color space-based. The proposed method is applied to 

multiple outdoor sequences and has promising results in 

accuracy and processing speed.  
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