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ABSTRACT

The radar autofocus problem arises in situations where radar mea-
surements are acquired of a scene using antennas that suffer from
position ambiguity. Current techniques model the antenna ambigu-
ity as a global phase error affecting the received radar measurement
at every antenna. However, the phase error signal model is only valid
in the far field regime where the position error can be approximated
by a one dimensional shift in the down-range direction. We propose
in this paper an alternate formulation where the antenna position er-
ror is modeled using a two-dimensional shift operator in the image-
domain. The radar autofocus problem then becomes a multichannel
two-dimensional blind deconvolution problem where the static radar
image is convolved with a two dimensional shift kernel for each an-
tenna measurement. We develop an alternating minimization frame-
work that leverages the sparsity and piece-wise smoothness of the
radar scene, as well as the one-sparse property of the two dimen-
sional shift kernels.

Index Terms— Radar autofocus, blind deconvolution, sparse
image reconstruction, fused Lasso, block-coordinate descent

1. INTRODUCTION

High resolution radar imaging is a requirement in a variety of re-
mote sensing applications including imaging with synthetic arrays
and through-the-wall radar imaging (TWI). Whereas the down-range
resolution is mostly controlled by the bandwidth of the transmitted
pulse, the cross-range (azimuth) resolution depends on the aperture
of the radar array. Generating a large physical aperture is practically
achieved by deploying a number of distributed antennas or arrays,
each having a relatively small aperture. A distributed setup allows
for flexibility of platform placement, reduces the operational and
maintenance costs, and adds robustness to sensor failures. Leverag-
ing prior knowledge of the scene, such as sparsity, the precise knowl-
edge of the antenna positions and a full synchronization of received
signals has been shown to significantly improve the radar imaging
resolution [1–4].

A fundamental challenge that arises in distributed array imaging
comes from uncertainty in the exact positions of the antennas. While
advanced positioning and navigation systems, such as the global nav-
igation satellite system (GPS/GNSS) and the inertial navigation sys-
tem (INS) provide somewhat accurate location information, the re-
mainsing uncertainty in the true antenna positions can span multiple
wavelengths. As a result, the received signal contains a gain and
phase ambiguity when the inexact antenna positions are used as ref-
erence. Consequently, applying standard reconstruction techniques
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Fig. 1: Position ambiguity of the radar antennas induces an image-
domain convolution model.

without accounting for the position perturbation produces out-of-
focus radar images.

There have been a multitude of solutions that addressed the radar
autofocus problem, particularly in the collocated antenna setting,
by developing tools that compensate for the antenna position er-
rors [6–11]. In some cases, the underlying structure of the radar
image, such as its sparsity, is utilized to limit the solution space and
produce higher quality reconstructions [12–18]. Fundamental to the
autofocus problem is the task of resolving the gain and phase errors
in the measured signal, which manifests as a blind deconvolution
problem in the measurement domain. A rich body of literature has
emerged recently for studying the identifiability and recovery guar-
antees of blind deconvolution algorithms [19–27]. Contrary to exist-
ing techniques that model the gain and phase ambiguity as a convo-
lution in the measurement domain, we model every measured signal
as an observation through the erroneous radar operator of a convolu-
tion between the static scene and a two-dimensional shift kernel.

We are interested in the problem of recovering an image of a
stationary scene composed of sparse targets, and represented in vec-
tor form as x ∈ CN . The image is to be recovered by processing
F−dimensional frequency-domain measurements {ỹm}Mm=1 from
M distributed antennas that suffer from position ambiguity. We de-
velop an image reconstruction framework wherein a perturbation in
the antenna positions results in a measured signal that corresponds to
an image-domain convolution model as illustrated in Figure 1. More
precisely, if we denote the radar propagation matrix at the correct
antenna positions by Ãm, and denote by Am the corresponding ma-
trix at the incorrect positions, then we have ỹm = Ãmx 6= Amx.
Unfortunately, we are only provided the measurements ỹm and the
matrices Am. The position ambiguity of radar antennas can be mod-
eled as a time-domain convolution with the measurements, or equiv-
alently, as a gain and phase ambiguity in the frequency-domain of
the radar signal, that is,

ỹm = DĝmAmx + nm, (1)

1623978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



where Dĝm is a diagonal matrix with the phase correction vector
ĝm ∈ CF on its diagonal entries, and nm is a measurement noise
vector. The system in (1) is ill-posed in general since for any M
measurements, we are left with MF equations and MF + N un-
knowns. Alternatively, we propose in this paper to represent the gain
and phase ambiguity as an image-domain convolution where a two-
dimensional spatial shift kernel hm is applied to the radar image x,
i.e.,

ỹm = Am (x ∗ hm) + nm. (2)

Under the new model, the shift kernels are one-sparse vectors with
unknown support locations, thereby reducing the unknown degrees
of freedom to M log(F ) +N .

We describe in Section 2 the radar signal model and prove that
the image-domain convolution model is exact when the transmitting
and receiving antennas are affected by the same position error. We
then propose in Section 3 a block-coordinate descent algorithm that
can efficiently solve the sparse blind deconvolution problem in the
image domain. Finally, we present numerical simulations in Sec-
tion 4 that validate our claims and demonstrate the effectiveness of
our approach for solving the high resolution radar autofocus prob-
lem.

2. PROBLEM FORMULATION

2.1. Signal model

Consider a two-dimensional radar imaging scenario in whichM dis-
tributed antennas are used to detect K targets. The targets are lo-
cated within a spatial region of interest that is discretized on a grid
Ω ⊂ R2, |Ω| = N, and N = Nx ×Ny with Nx and Ny specifying
the number of grid points in the horizontal and vertical directions.
Denote by l ∈ Ω the spatial position of a grid-point in Ω.

Let Γ ⊂ R2, |Γ| = M be the set of all the spatial locations of
the M antennas. Without loss of generality, we shall assume that a
subset of the antennas act as transmitter/receivers while the remain-
ing antennas are only receivers. A transmitting antenna at position
r ∈ Γ emits a time-domain pulse p(t) with frequency spectrum
P (ω), where ω = 2πf is the angular frequency and f ∈ B is the
ordinary frequency in the signal bandwidth B, |B| = F .

Denote by ym := y(rm, r
′
m) and by Am := A(rm, r

′
m)

the corresponding measurement vector and imaging operator of an-
tenna pair (rm, r

′
m) indexed by m. Let r̃m = rm + em and

r̃′m = r′m + e′m be the perturbed transmitter and receiver posi-
tions, respectively, where em and e′m denote the positioning er-
rors. The received antenna measurement ỹm := y(r̃m, r̃

′
m) ob-

serves the scene reflectivity x through the perturbed imaging opera-
tor Ãm := A(r̃m, r̃

′
m), i.e.,

ỹm = Ãmx + nm. (3)

Since the operator Ãm is unknown, we need to define the received
measurements ỹm as a function of Am and x.

2.2. Convolution in the measurement-domain

Standard approaches for radar autofocus utilize a gain and phase cor-
rection in the frequency measurement to describe ỹm in terms of
Am and x. More precisely, let ĝm ∈ CF be a complex valued
vector corresponding to the Fourier transform of a time-domain ker-
nel gm ∈ RM . The received measurement is expressed as in (1).
Therefore, given M measurements ỹm,m ∈ {1 . . .M}, the radar
autofocus problem is regarded as a bilinear inverse problem in both

the reflectivity image x and the phase correction vectors ĝm for all
m.

Notice that the system in (1) has F equations with F + N un-
knowns, which makes it severely ill-posed. Even in the case where
x is sparse, the problem remains ill-posed since a general phase cor-
rection vector ĝm continues to have F degrees of freedom. In order
to make the problem tractable, the kernels gm = FH

1 ĝm are often
assumed to be shift kernels, which reduces its degrees of freedom
to a singe phase angle. However, the approximation that gm is a
shift operator is only valid in the far field regime and where the po-
sition error can be approximated by a one dimensional shift in the
down-range direction of the virtual antenna array.

2.3. Convolution in the image-domain

We propose here an alternate model to the convolution with a shift
kernel in the measurement-domain by switching the convolution to
the image-domain. Let hm ∈ RN2

h , Nh ≤ min{Nx, Ny} be a vec-
torized two-dimensional shift kernel of size Nh × Nh. Under the
new model, the received signal of the antenna pair indexed by m is
written as in (2).

Proposition 1 shows that when the transmitting and receiving
antennas are affected by the same position ambiguity, the convolu-
tion kernel hm is strictly a spatial shift kernel with a single nonzero
entry equal to one. This situation is prevalent in radar systems where
the transmitting and receiving antennas are collocated. The system
in (2) may still be underdetermined with F equations and N2

h +N
unknowns. However, given enough measurements, it should be pos-
sible to recover x and all shift kernels hm by utilizing an appropriate
regularization for each. We omit the proof due to space limitations
but will include it in a longer version of this work.

Proposition 1. Let ỹm := Ãmx, where x is a radar image defined
over a spatial domain Ω. Denote by em and e′m the position am-
biguities for the transmitter and receiver antenna pair respectively
indexed by m.

If e′m = em and x is zero valued within a boundary of width
em inside Ω, then there exists a spatially shifted image x̃(l) = δ(l+
em) ∗ x(l), ∀l ∈ Ω such that ỹm = Amx̃, where δ(l + em) is the
two dimensional shift kernel.

Otherwise, if e′m = em + dm with ‖dm‖2 ≤ ∆, then the ap-
proximation ỹm ≈ Amx̃ incurs a phase error bounded by e±iω∆/c

for each frequency ω.

3. PROPOSED APPROACH

Consider the image-domain convolution model expressed in the spa-
tial Fourier domain below

ỹm = Am (x ∗ hm) + nm

= AmFH
2Dĥm

x̂ + nm,
(4)

where F2 is the two dimensional Fourier transform operator applied
to the vectorization of a matrix, ĥm = F2hm and x̂ = F2x denote
the two-dimensional Fourier transforms of hm and x, respectively,
and Dĥm

is the diagonal matrix with ĥm on the diagonal. We pro-
pose in this paper a block coordinate descent approach for computing
the radar reflectivity image x and the spatial convolution filters hm

from noisy measurements ỹm.
We first incorporate into the model in (4) the prior information

that the image x is sparse and piecewise continuous and that the ker-
nels hm are two dimensional shift operators. Therefore, we added
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a fused Lasso [28] regularizer Rx(·) for x and an `1 norm regular-
izer Rh(·) to hm. The overall optimization problem is described as
follows

min
x ∈ CN ,

hm ∈ R
N2

h
+

M∑
m=1

1
2
‖ỹm −AmFH

2Dĥm
x̂‖22

+ µRh(hm) + λRx(x)

subject to 1Thm = 1,∀m ∈ {1 . . .M},

(5)

where 1 is the all one vector, and as before, ĥm = F2hm and
x̂ = F2x. The parameters µ and λ are regularization parameters
controlling the tradeoff between the signal priors and the data mis-
match cost.

The fused Lasso regularizer Rx(x) combines the `1 norm and
the total variation (TV) norm of a signal:

Rx(x) = ‖x‖1 + γ‖x‖TV , (6)

where the total variation norm is defined by

‖x‖TV := ‖s‖2,1 =

N∑
j=1

√
s2(j) + s2(N + j). (7)

the sum of the `2 norms of groups of elements in the gradient vector
s = Ex, where E : CN → C2N is the two dimensional finite
difference operator, such that, the first N entries of s contain the
horizontal gradient coefficients, and the second N entries contain
the vertical gradient coefficients. On the other hand, the property of
a shift kernel requires that every hm is one sparse with a nonzero
entry equal to one. Since hm is nonnegative with the sum of its
entries equal to one, the only regularization required is the `1 norm
penalty:

Rh(hm) =

M∑
m=1

‖hm‖1. (8)

Algorithm 1 Block coordinate descent for solving (5)

input: measurements {ỹm}Mm=1, initial guess x0,h0, max-
imum subroutine iterations T , and regularization parameters
λ, µ.
set: j ← 1; h̃0

m,h
0
m ← h0 for all m

1: repeat
2: Am

x ← Am
x (hj−1

m ) for all m
3: xj ← fista({Am

x }Mm=1, λRx, {ỹm}Mm=1,x
j−1, T )

4: for m← 1 to M do
5: Am

h ← Am
h (xj)

6: h̃j
m ← fista(Am

h , µRh, ỹm, h̃
j−1
m , T )

7: hj
m ← P (h̃j

m)

8: j ← j + 1
9: until stopping criterion

return: estimate of the radar image xj .

Clearly, problem (5) is nonconvex and our aim is to find a sta-
tionary point to the problem. Therefore, we present in Algorithm 1
a block coordinate descent approach that alternates between descent
steps for each of x and hm, for all m. The shift kernels hm are all
initialized to the no-shift kernel h0, an Nh × Nh zero-valued ma-
trix with the central entry set equal to one. For each descent step,
we apply a small number of iterations of the fast iterative shrink-

age/thresholding algorithm (FISTA) [29] adapted to the appropriate
regularizers of x or hm. Moreover, every descent step of hm, pro-
duces an estimate h̃m which does not necessarily satisfy the shift
kernel properties, since we only run a small number of FISTA itera-
tions. Therefore, we use a projector P (h̃m) onto the space of shift
kernels which sparsifies h̃m by setting its largest entry that is closest
to the center to one and setting the remaining entries to zero.

Algorithm 2 fista subroutine for updating hm

input: Am
h , µRh, ỹm, h̃

j−1
m , T .

set: q0 = 1, u0 = s0 = h̃j−1
m

1: α← inverse of maximum eigenvalue of AmH
h Am

h

2: for t← 1 to T do
3: zt ← st−1 + αAmH

h

(
ỹm −Am

h st−1
)

4: ut ← T+

(
zt;αµ

)
5: ut ← 1

1T ut ut

6: qt ←
1+

√
1+4q2t−1

2

7: st ← ut +
qt−1−1

qt
( ut − ut−1)

return: sT .

Algorithm 3 fista subroutine for updating x

input: {Am
x }Mm=1, λRx, {ỹm}Mm=1,x

j−1, T .
set: q0 = 1, u0 = s0 = xj−1

1: α← inverse of maximum eigenvalue of
M∑

m=1

AmH
x Am

x

2: for t← 1 to T do

3: zt ← st−1 + α
M∑

m=1

AmH
x

(
ỹm −Am

x st−1
)

4: vt ← T
(

zt;αλ
)

5: ut ← arg min
u∈CN

{
1
2
‖u− vt‖22 + αλγ‖u‖TV )

}
6: qt ←

1+
√

1+4q2t−1

2

7: st ← ut +
qt−1−1

qt
( ut − ut−1)

return: sT .

In general, FISTA can be used to solve convex optimization
problems of the form

min
u∈S

D( u) + λR( u), (9)

where D( u) is a smooth data fidelity cost function and R is a reg-
ularizer which can be a non-smooth function. In the context of Al-
gorithm 1, we define the subroutine fista(Am,R, ym, uinit, T )
as an algorithm that runs T iterations of the FISTA procedure with
a data fidelity cost function D( u), regularizer R, and initial guess
uinit. The data fidelity cost function is specified by (5) as

D( u) :=

M∑
m=1

1

2
‖ỹm −Am u‖22, (10)

where u refers to either the image x or the sequence of convolution
kernels hm. The forward operator with the respect to x given the
estimates of the kernels ht

m at iteration t is defined as

Am
x (ht

m) := AmFH
2DF2ht

m
F2. (11)

Similarly, the forward operator with respect to hm given the estimate
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of the image xt at iteration t is defined as

Am
h (xt) := AmFH

2DF2xtF2. (12)

Note that the expression for D in (10) is separable in hm for every
m. Therefore, the FISTA subroutines for updating hm and x are de-
scribed in Algorithm 2 and Algorithm 3, respectively. The function
T
(

zt;αλ
)

is the standard soft-thresholding operator defined as

T ( z; τ) =

 z(j)− τ, if z(j) > τ
z(j) + τ, if z(j) < −τ
0, otherwise.

(13)

The function T+ ( z; τ) is the non-negative counterpart that excludes
the second condition in (13). We handle the combined `1 norm and
total variation regularizers of x by splitting the proximal operators
into the two stages shown in steps 4 and 5 of Algorithm 3. In the first
stage, the soft-thresholding operator T

(
zt;αλ

)
is used to sparsify

the signal zt. A second proximal operator is then applied in step 5 of
the algorithm to enforce the total variation regularization. We imple-
ment this proximal operator using an alternating direction method of
multipliers (ADMM) algorithm [30, 31].

4. PERFORMANCE EVALUATION

We evaluate the performance of our radar autofocus framework us-
ing the simulation setup shown in Figure 2. The figure illustrates
a radar scene acquired by 32 distributed antennas divided into four
arrays with average position error around 2λ and maximum error at
3.5λ, where λ is the wavelength of the center frequency of a differ-
ential Gaussian pulse centered at 6 GHz with a 9 GHz bandwidth.
The true antenna positions are indicated by the ×’s whereas the er-
roneous assumed positions are indicated by the dots. The received
signals are contaminated with white Gaussian noise at 30 dB peak
signal to noise ratio (PSNR) after matched-filtering with the trans-
mitted pulse. Figure 3(a) shows the ground truth recovery where the
correct antenna positions are used. Contrast that with Figure 3(b)
where the incorrect antenna positions are used in constructing the
radar propagation matrix. The advantage of the image-domain con-
volution model becomes evident when we compare the recovery per-
formance in Figures 3(c) and 3(d). While the measurement-domain
convolution model can provide an approximation of the radar scene
as observed in Figure 3(c), the image-domain convolution model
produces an exact reconstruction of the scene in Figure 3(d) up to
a global shift ambiguity.
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Fig. 2: A distributed radar acquisition system with position ambi-
guity. The round dots indicate the assumed but erroneous antenna
positions, while the ×’s indicate the true positions.
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Fig. 3: (a)–(b) Sparse recovery of radar images without autofocusing
obtained using (a) the correct antenna positions, and (b) the incorrect
antenna positions. (c)–(d) Autofocus results using blind deconvolu-
tion according to (c) the time-domain convolution model; and (d) us-
ing the proposed sparse blind deconvolution and the image-domain
convolution model.
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Fig. 4: ROC curves of the reconstructed images using (a) the pro-
posed sparse blind deconvolution scheme, and (b) the iterative per-
turbation estimation scheme of [16].

Next, we compare the robustness of our proposed approach to
the state of the art iterative perturbation estimation scheme of [16].
The method in [16] leverages the sparsity of the radar scene as well
as the proximity between consecutive antenna positions in order to
estimate the antenna perturbations and consequently improve the re-
constructed image quality. To that end, we consider the radar scene
shown in Figure 2 and contaminate the measurements with additive
white Gaussian noise to the effect of producing PSNR levels equal to
2, 4, 6, 10, and 20 dB. Since the scheme in [16] relies on the antenna
proximity to perform coherence analysis, we allow it to use addi-
tional measurements at antenna positions that interpolate the gaps
between the ×’s for a total of 52 antenna positions per array. On the
other hand, our proposed method uses only eight antenna positions
per array. We compare the reconstruction performance in terms of
the receiver operating characteristic (ROC) curves as shown in Fig-
ure 4. To generate the ROC curves, we simulate five different target
positions as well as five different antenna perturbations and noise re-
alizations. It can be seen from the figure that our proposed method
is significantly more robust to measurement noise even at extremely
high noise levels.

1626



5. REFERENCES

[1] M. A. Herman and T. Strohmer, “High-resolution radar via
compressed sensing,” IEEE Transactions on Signal Process-
ing, vol. 57, no. 6, pp. 2275–2284, June 2009.

[2] Y. Yu, A. P. Petropulu, and H. V. Poor, “Mimo radar using com-
pressive sampling,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, no. 1, pp. 146–163, Feb 2010.

[3] C. R. Berger and J. M. F. Moura, “Noncoherent compressive
sensing with application to distributed radar,” in 2011 45th An-
nual Conference on Information Sciences and Systems, March
2011, pp. 1–6.

[4] D. Liu, U. S. Kamilov, and P. T. Boufounos, “Sparsity-driven
distributed array imaging,” in 2015 IEEE 6th International
Workshop on Computational Advances in Multi-Sensor Adap-
tive Processing (CAMSAP), Dec 2015, pp. 441–444.

[5] L. Wang, B. Yazıci, and H. C. Yanik, “Antenna motion errors
in bistatic sar imagery,” Inverse Problems, vol. 31, no. 6,
p. 065001, 2015. [Online]. Available: http://stacks.iop.org/
0266-5611/31/i=6/a=065001

[6] D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz,
“Phase gradient autofocus-a robust tool for high resolution sar
phase correction,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 30, no. 3, pp. 827–835, Jul 1994.

[7] L. Xi, L. Guosui, and J. Ni, “Autofocusing of isar images based
on entropy minimization,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 35, no. 4, pp. 1240–1252, Oct
1999.

[8] W. Ye, T. S. Yeo, and Z. Bao, “Weighted least-squares estima-
tion of phase errors for sar/isar autofocus,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2487–
2494, Sep 1999.

[9] H. J. Cho and D. C. Munson, “Overcoming polar-format is-
sues in multichannel sar autofocus,” in 2008 42nd Asilomar
Conference on Signals, Systems and Computers, Oct 2008, pp.
523–527.

[10] K. H. Liu and D. C. Munson, “Fourier-domain multichannel
autofocus for synthetic aperture radar,” IEEE Transactions on
Image Processing, vol. 20, no. 12, pp. 3544–3552, Dec 2011.

[11] M. P. Nguyen and S. B. Ammar, “Second order motion com-
pensation for squinted spotlight synthetic aperture radar,” in
Conference Proceedings of 2013 Asia-Pacific Conference on
Synthetic Aperture Radar (APSAR), Sept 2013, pp. 202–205.

[12] N. O. Onhon and M. Cetin, “A sparsity-driven approach for
joint sar imaging and phase error correction,” IEEE Transac-
tions on Image Processing, vol. 21, no. 4, pp. 2075–2088, April
2012.

[13] X. Du, C. Duan, and W. Hu, “Sparse representation based aut-
ofocusing technique for isar images,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 51, no. 3, pp. 1826–
1835, March 2013.

[14] S. Kelly, M. Yaghoobi, and M. Davies, “Sparsity-based autofo-
cus for undersampled synthetic aperture radar,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 50, no. 2, pp.
972–986, April 2014.

[15] J. Yang, X. Huang, J. Thompson, T. Jin, and Z. Zhou, “Com-
pressed sensing radar imaging with compensation of observa-
tion position error,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 52, no. 8, pp. 4608–4620, Aug 2014.

[16] D. Liu, U. S. Kamilov, and P. T. Boufounos, “Coherent dis-
tributed array imaging under unknown position perturbations,”
in 4th International Workshop on Compressed Sensing The-
ory and its Applications to Radar, Sonar and Remote Sensing
(CoSeRa), Sept 2016, pp. 105–109.

[17] L. Zhao, L. Wang, G. Bi, S. Li, L. Yang, and H. Zhang, “Struc-
tured sparsity-driven autofocus algorithm for high-resolution
radar imagery,” Signal Processing, vol. 125, pp. 376 – 388,
2016.

[18] M. J. Hasankhan, S. Samadi, and M. Çetin, “Sparse
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