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ABSTRACT

We develop a 2D travel time tomography method which regu-
larizes the inversion by modeling sparsely patches of slow-
ness pixels from discrete slowness map, and adapts sparse
dictionaries to the slowness data. This locally-sparse travel
time tomography (LST) approach considers global and lo-
cal behavior of slowness, whereas conventional regulariza-
tion methods consider only global covariance of pixels. We
develop a maximum a posteriori formulation of LST, and fur-
ther exploit the sparsity of patches using dictionary learning.
We demonstrate the LST method on densely, but irregularly
sampled synthetic slowness maps.

Index Terms— Sparse modeling, machine learning, dic-
tionary learning, geophysics, seismics

1. INTRODUCTION

Travel time tomography methods attempt to estimate com-
plex Earth structure, which contains smooth and discontin-
uous features at multiple spatial scales, using seismic and
acoustic wave travel times between recording stations [1, 2].
The inversion of the travel times for a slowness model (inverse
of speed) is ill-posed, with often dense but irregular ray cov-
erage of environments. Conventional tomography techniques
regularize the inversion by restricting the models to be only
smooth or discontinuous, which include 1st and 2nd order
Tikhonov regularization [1, 2]. Other regularization methods
have been proposed which employ of wavelet functions [3–6],
total variation (TV) [7,8], or adaptive discretizations of slow-
ness [9].

Recent works in acoustics have utilized sparse modeling
and compressive sensing (CS) [10–12] to improve perfor-
mance in beamforming [13,14] and inversion for ocean acous-
tic properties [15–18]. Similarly, the more recent wavelet-
based methods in seismic tomography, e.g. [4, 6, 19], assume
sparse wavelet coefficients. In sparse modeling and CS, in-
verse problems are regularized by modeling signals as sparse
combinations of vectors or atoms from set or dictionary of
atoms, which can be prescribed or learned [11, 12, 20]. This
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paradigm is ubiquitous in signal processing for image denois-
ing and inpainting [11, 12], and medical imaging [21, 22],
to name a few examples. Learned dictionaries can improve
reconstruction performance over prescribed dictionaries and
recently, inversion methods with dictionary learning have
been developed in the geosciences. Applications include
denoising seismic traces [23] and ocean acoustic record-
ings [24], full waveform inversion [25], and estimation of
ocean sound speed profiles [15, 16].

In this paper, we develop a sparse and adaptive approach
to 2D travel time tomography, which we refer to as locally-
sparse travel time tomography (LST). The LST sparsely mod-
els local behaviors of overlapping groups of pixels from a
discrete slowness map, called patches. Large scale features
in the slowness map are constrained using least squares. This
approach is similar to works in image denoising [26] and CS
magnetic resonance imaging (MRI) [22]. We develop a max-
imum a posteriori (MAP) formulation to the problem and use
the iterative thresholding and signed K-means (ITKM) dictio-
nary learning algorithm to improve the slowness models over
prescribed dictionaries. We demonstrate the performance of
LST considering 2D surface wave tomography with synthetic
slowness maps and travel time data. The results are compared
with conventional tomography. More details of the approach
and further experimental results are available in a forthcom-
ing paper [27].

2. OVERVIEW OF LST

Given travel time perturbations t ∈ RM from M ray paths
through a discrete slowness map (see Fig. 1(a)), and tomogra-
phy matrix A ∈ RM×N , LST estimates the sparse slowness
ss. We first estimate the global slowness sg, and then obtain
the patch slowness Dxi for patch i of sg. Here D ∈ Rn×Q
is a dictionary of Q atoms, and xi ∈ Rn is the sparse coeffi-
cients with n the number of pixels in a patch. Finally slow-
nesses {Dx̂i ∀ i} are averaged with sg to obtain ss.

2.1. Global slowness and travel time

We discretize a 2D slowness map as a W1 ×W2 pixel image,
shown in Fig. 1(a), where each pixel has constant slow-
ness. The slowness pixels are represented by the vector
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Fig. 1: (a) 2D slowness patches and slowness map parameters, with
(b) example patch distribution. Synthetic slowness s′ for (c) checker-
board map and (d) smooth-discontinuous map (W1 = W2 = 100
pixels (km)). (e) 2016 straight ray paths (surface wave) from 64
seismic stations (red X’s).

s′ = sg + s0 ∈ RN , where s0 is reference slownesses and sg
is perturbations from the reference, with N = W1W2. We
assume travel time observations t′ = t + t0 from M straight
ray paths, where t0 and t are the reference travel time and
perturbations. Since s0 and t0 = As0 are known, we esti-
mate the perturbations

t = Asg + ε, (1)

where ε ∈ RM is Gaussian noise N (0, σ2
ε I), with mean 0

and covariance σ2
ε I, in the travel time observations. We call

(1) the global model, as it captures the large-scale features
that span the discrete map and generates t. We assume dense
ray coverage, and do not explicitly account for varying ray
density (see Sec. 3).

2.2. Local sparse model

Each patch is a
√
n ×
√
n group of pixels from ss, see Fig.

1(a). The patches are selected from ss by the binary matrix
Ri ∈ {0, 1}n×N . Hence the slownesses in patch i are Riss.
Each patch is indexed by the row w1 and column w2 of its
top-left pixel in the 2D image as (w1,i, w2,i). We consider all
overlapping patches, with w1,i and w2,i differing from their
neighbor by ±1 (stride of one). Thus, for a W1 ×W2 pixel
image, the number of patches is I = (W1 −

√
n + 1)(W2 −√

n+ 1).
Riss is approximated by sparse combinations atoms from

D. The coefficients xi are estimated using the `0 pseudo-
norm (see (7)), which penalizes the number of non-zero co-
efficients [12]. We call (7) the local model, as it captures the
smaller scale, localized features contained by patches.

The atoms in D are considered “elemental patches”,
where only a small number of atoms from Q � I are

necessary to adequately approximate Riss. Atoms can be
prescribed functions, e.g. wavelets or the discrete cosine
transform (DCT), or learned from the data (see Sec. 3.2).

3. DERIVATION OF LST MAP OBJECTIVE

Starting with Bayes’ rule, we derive the LST MAP objective
for ss, incorporating both local sparse prior and global con-
straints. For the derivation, we assume the dictionary D and
sensing matrix A known. In Sec. 3.2, dictionary learning is
included in the algorithm.

The posterior density is formulated as

p
(
sg, ss,X

∣∣t)∝p(t∣∣sg, ss,X)p(sg∣∣ss,X)p
(
ss
∣∣X)p

(
X), (2)

where X = [x1, ...,xI ] ∈ RQ×I are the coefficients describ-
ing all patches. If sg (ss) is known, so is t (sg), whereby

p
(
sg, ss,X

∣∣t) ∝ p(t∣∣sg)p(sg∣∣ss)p(ss∣∣X)p
(
X). (3)

We assume p
(
t
∣∣sg), p(sg∣∣ss), and p

(
ss
∣∣X) are Gaussian,

which results in a simple LST objective. Hence, for the global
model, p

(
t
∣∣sg) = N (Asg,Σε) and p

(
sg
∣∣ss) = N (ss,Σg)

where Σε ∈ RK×K is the covariance of ε and Σg ∈ RN×N
is the covariance of sg.

For the local model, the patch slownesses {Riss ∀ i } are
considered independent, giving the local likelihood p

(
ss
∣∣X)

p
(
ss
∣∣X) =∏

i

p
(
Riss

∣∣xi) =∏
i

N
(
Dxi,Σp,i

)
(4)

where Σp,i ∈ Rn×n is the covariance of the patch slownesses
for each patch i. Assuming the coefficients xi independent
and sparse, ln p

(
X
)
=
∑
i ln p

(
xi
)
, with ln p

(
xi
)
∝ ‖xi‖0.

We further assume the number of non-zero coefficients T is
the same for every patch (for which the `0-norm penalty is
well suited), and errors iid with Σε = σ2

ε I, Σg = σ2
gI, and

Σp,i = σ2
p,iI, where I is the identity matrix. Hence the MAP

estimate
{
ŝg, ŝs, X̂

}
is from (3){

ŝg, ŝs, X̂
}
= argmin

sg, ss, X

{
1

σ2
ε

‖t−Asg‖22 +
1

σ2
s

‖sg − ss‖22

+
1

σ2
p,i

∑
i

‖Dxi −Riss‖22
}

subject to ‖xi‖0 = T ∀ i.
(5)

3.1. Solving for the MAP estimate

We find the MAP estimates
{
ŝg, ŝs, X̂

}
solving (5) via block-

coordinate minimization, similar to [22, 26]. The global ob-
jective is written from (5)

ŝg = argmin
sg

‖t−Asg‖22 + λ1‖sg − ss‖22, (6)

where λ1 = (σε/σg)
2 is a regularization parameter.

The local objective from (5) for each patch is solved with
ss = ŝg (decoupling the local and global objectives), giving

x̂i = argmin
xi

‖Dxi −Riŝg‖22 subject to ‖xi‖0 = T. (7)
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Given: t ∈ RM , A ∈ RM×N , s0s = 0 ∈ RN , D0 = Haar,
DCT (or) noise N

(
0, 1
)
∈ Rn×Q, λ1, λ2, T , and j = 1

Repeat until convergence:
1. Global estimate: solve (6) using LSQR [28],

ŝjg = argmin
sjg

‖Asjg − t‖22 + λ1‖sjg − sj−1s ‖22.

2. Local estimate
a: Setting sjs = ŝjg, center patches {Riŝ

j
g ∀ i } and

i. (Dictionary learning) Find Dj using ITKM [20].
i. (Prescribed dictionary) Set Dj = D0.
ii. Solve (7) using OMP,

x̂ji = argmin
xj
i

‖Djxji −Riŝ
j
g‖22 subject to ‖xji‖0 = T .

b: Obtain ŝjs by (10) as

ŝjs,n =
λ2ŝ

j
g,n+bns

j
p,n

λ2+bn
j = j + 1

Table 1: Sparse travel time tomography (LST) algorithm with fixed
or adaptive dictionaries

With X̂ = [x̂1, ..., x̂I ] from (7) and ŝg from (6), we find ŝs
from (5), assuming σ2

p,i = σ2
p

ŝs = argmin
ss

λ2‖ŝg − ss‖22 +
∑
i

‖Dx̂i −Riss‖22, (8)

where λ2 = (σp/σg)
2 is a regularization parameter. The esti-

mate ŝs is obtained analytically from (8) by

ŝs =

(
λ2I +

∑
i

RT
i Ri

)−1(
λ2ŝg +

∑
i

RT
i Dx̂i

)
, (9)

which averages the pixels from the patch estimates {Dx̂i ∀ i},
with weight given to ŝg by λ2. From (9), the average patch
slowness is sp =

(∑
i R

T
i Ri

)−1(∑
i R

T
i Dx̂i

)
, with b =

diag
(∑

i R
T
i Ri

)
∈ ZN the number of patches per pixel.

Hence, (9) is expressed as an operation at pixel n by

ŝs,n =
λ2ŝg,n + bnsp,n

λ2 + bn
. (10)

3.2. LST algorithm with dictionary learning

The results (6), (7), and (9) give the LST algorithm for es-
timating ss, shown in Table 1, as a MAP estimate with lo-
cal sparse priors using a prescribed dictionary D. Dictionary
learning via the ITKM [20] is added to the LST in the solution
to the local objective (7). The global objective (6) is solved
using the sparse least squares program LSQR [28]. The local
objective (7) is solved using OMP after the slowness patches
{Riŝg ∀ i } are centered [11].

The complexity of each LST iteration is determined
primarily by LSQR computation in the global estimate,
O(2MN), and by ITKM O(knQI) and OMP O(TnQI)
in the local estimate, where k is the ITKM iterations (see

Table 1). For large slowness maps, we expect the LST com-
plexity to be dominated by LSQR. In our simulations we
obtain reasonable run times (see Sec. 4.1).

3.3. Conventional tomography

We illustrate conventional tomography with a Bayesian ap-
proach [29], which enforces smoothness regularization with a
global (non-diagonal) covariance. Considering the measure-
ments (1), the MAP estimate of the slowness is

ŝg =
(
ATA + ηΣ−1L

)−1
ATt, (11)

where η = (σε/σc)
2 is a regularization parameter, σc is the

conventional slowness variance, and smoothness ΣL(i, j) =
exp

(
− Di,j/L

)
. Here, Di,j is the distance between cells i

and j, and L is the length scale [29, 30].

4. SIMULATION

We demonstrate the performance of LST (Sec. 3, Table 1)
relative to a conventional tomography (Sec. 3.3). Experi-
ments are conducted using simulated travel times from two
synthetic 2D slowness maps (Fig. 1(c,d)) with dimensions
W1 = W2 = 100 pixels (km). The checkerboard pattern
(Fig. 1(c)) contains only discontinuous slowness whereas the
smooth-discontinuous map (Fig. 1(d)) contains a fault-like
discontinuity in a smooth map. The slowness estimates from
LST are plotted as ŝ′s = ŝs + s0 ∈ RN , and for conventional
ŝ′g = ŝg + s0 ∈ RN .

The slownesses are sampled by M = 2016 straight-rays
between 64 seismic stations (see Fig. 1(e)). The travel time
vector t is found by integrating along these ray paths. We
consider only straight ray propagation, to focus on our pro-
posed inversion approach. The reference slowness is calcu-
lated from the mean travel time using the the tomography
matrix A. The LST inversion valid-region is obtained with a
dilation operation with a patch template along the outermost
ray paths. The conventional valid region is the outermost pix-
els along the ray paths. The conventional valid region is used
for error calculations for both methods.

We consider the noise-free case (σε = 0). The results
of the LST and conventional tomography are shown in Figs.
2 and 3. RMSE (s/km) of the estimates ŝ′s and ŝ′s relative
to the true slowness s′ is printed on the 2D estimates. We
invert using LST with and without dictionary learning. We
consider two prescribed dictionaries D, overcomplete Haar
wavelet and DCT dictionaries (both Q = 169, n = 64, since
Haar wavelet dimensions power of 2).

4.1. Inversion parameters and results

The regularization parameter values for LST and conventional
tomography were selected to minimize RMSE (s/km). For
LST, the best parameters were: for both prescribed dictionary
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Fig. 2: LST and conventional tomography for checkerboard map
(Fig. 1(c)). 2D and 1D (from black line in 2D) slowness estimates
against true slowness for: (a,b) conventional ŝ′g; LST ŝ′s with (c,d)
Haar dictionary and (e,f) with DCT dictionary D; and (g,h) with
dictionary learning. RMSE (s/km) is printed on each 2D image.

and dictionary learning, λ1 = 0 km2 (in (6)) and λ2 = 0
(in (8)); for prescribed dictionaries T = 2 non-zero coef-
ficients in (7); for dictionary learning, T = 1, n = 100,
and for the checkerboard (smooth-discontinuous) Q = 166
(Q = 268 atoms). Since for the noise free case σε = 0, we
expect λ1 = (σε/σg)

2 = 0 km2 to be best. We assume the
slowness patches are well approximated by the sparse model
(7), and expect σp � σg . Hence, we expect the best value
of λ2 = (σp/σg)

2 in (8) to be small. For conventional to-
mography (Sec. 3.3), the best parameters were L = 10 km
and η = 0.1 km2 (in (11)) for the both the checkerboard
and smooth-discontinuous maps, which deviates from the ex-
pected value of η = (σε/σc)

2 = 0.
While the discontinuous shapes in the Haar dictionary are

similar to the discontinuous content of the checkerboard im-
age, the local features in the higher order Haar wavelets over-
fit the ray sampling where sampling is poor (near the edges
of the inversion, Fig. 2(c,d)). The performance of the Haar
wavelets is better for the smooth-discontinuous slowness map
(Fig. 3(d–f)) than for the checkerboard. As shown in Fig.
3(d–f), the Haar wavelets add false high frequency structure
to the slowness reconstruction but the trends in the smooth-
discontinuous features are well preserved. The inversion per-
formance of the DCT transform (Fig. 2(e,f) and Fig. 3(g,j))
is better than the Haar wavelets for both cases, but matches
less closely the discontinuous slowness features, as the DCT
atoms are smooth. The smoothness of the DCT atoms better
preserve the smooth slowness structure.

The LST with dictionary learning (Fig. 2(g,h) and Fig.
3(j–l)) achieves the best RMSE relative to the true slowness
s′. As in the other cases, the performance degrades near the
edges of the ray sampling, where the ray coverage is poor, but
high resolution is maintained across a large part of the sam-
pling region. The RMSE of the Haar wavelet inversion for
the checkerboard is greater than for the conventional method,

(a)

0.021

1

20

40

60

80

100

R
a

n
g

e
 (

k
m

)

0.3 0.4 0.5

Slowness (s/km)

0.3

0.4

0.5

S
lo

w
n

e
s
s
 (

s
/k

m
)

(b)

True

Estimated

1

20

40

60

80

100

R
a

n
g

e
 (

k
m

) (c)

(d)

0.022

(e) (f)

(g)

0.019

(h) (i)

(j)

0.010

1 20 40 60 80 100

Range (km)

1 20 40 60 80 100

Range (km)

(k)

0.3 0.33 0.36

Slowness (s/km)

(l)

Fig. 3: LST and conventional tomography for smooth-discontinuous
map (Fig. 1(d)). 2D and 1D (horizontal and vertical, from black lines
in 2D) slowness estimates against true slowness for: (a–c) conven-
tional ŝ′g; LST ŝ′s with (d–f) Haar dictionary and (g–i) with DCT
dictionary D; and (j–l) with dictionary learning. RMSE (s/km) is
printed on each 2D image.

although resolution is lost in the conventional MAP inver-
sion near the more densely sampled region of the wave speed
maps. The RMSE for the DCT is less than the that of the Haar
wavelets and also the conventional MAP inversion. A better
qualitative fit to the true slowness is also observed.

The LST algorithm (Table 1) used 100 iterations for all
cases and the ITKM used 50 iterations. In Matlab, the inver-
sion with dictionary learning took∼ 5 min on a Macbook Pro
2.5 GHz Intel Core i7.

5. CONCLUSIONS

We derived a travel time tomography method which incorpo-
rates a sparse prior on patches of the slowness image, which
we refer to as the LST algorithm. The LST uses prescribed or
learned dictionaries, though the learned dictionaries improve
performance. The local sparse prior and dictionary learning
provide an improved slowness model, which is capable of
modeling simultaneously smooth discontinuous features.

We considered 2D surface wave tomography, and for
densely sampled slowness maps obtained superior results
from the LST over conventional tomography. The LST is
relevant to other tomography scenarios where slowness struc-
ture is irregularly sampled, in for instance ocean [16] and
terrestrial [31] acoustics.
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[14] P. Gerstoft, C.F. Mecklenbräuker, A. Xenaki, and S. Nannuru,
“Multisnapshot sparse Bayesian learning for DOA,” IEEE Sig-
nal Process. Lett., vol. 23, no. 10, pp. 1469–1473, 2016.

[15] T. Wang and W. Xu, “Sparsity-based approach for ocean
acoustic tomography using learned dictionaries,” OCEANS
2016 Shanghai IEEE, pp. 1–6, 2016.

[16] M. Bianco and P. Gerstoft, “Compressive acoustic sound speed
profile estimation,” J. Acoust. Soc. Am., vol. 139, no. 3, pp.
EL90–EL94, 2016.

[17] M. Bianco and P. Gerstoft, “Dictionary learning of sound speed
profiles,” J. Acoust. Soc. Am., vol. 141, no. 3, pp. 1749–1758,
2017.

[18] M. Bianco and P. Gerstoft, “Regularization of geophysical in-
version using dictionary learning,” IEEE Int. Conf. Acoust.,
Speech, and Signal Process. (ICASSP), 2017.
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