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ABSTRACT

This paper presents a low-rank matrix completion approach to tackle

the problem of wall clutter mitigation for through-wall radar imag-

ing in the compressive sensing context. In particular, the task of

wall clutter removal is reformulated as a matrix completion problem

in which a low-rank matrix containing wall clutter is reconstructed

from compressive measurements. The proposed model regularizes

the low-rank prior of the wall-clutter matrix via the nuclear norm,

casting the wall-clutter mitigation task as a nuclear-norm penalized

least squares problem. To solve this optimization problem, an it-

erative algorithm based on the proximal gradient technique is intro-

duced. Experiments on simulated full-wave electromagnetic data are

conducted under compressive sensing scenarios. The results show

that the proposed matrix completion approach is very effective at

suppressing unwanted wall clutter and enhancing the targets.

Index Terms— Through-the-wall radar imaging, wall clutter

mitigation, compressed sensing, low-rank matrix recovery, sparse

reconstruction.

1. INTRODUCTION

Through-the-wall radar imaging (TWRI) has emerged as a useful

technology for capturing scenes behind walls and other visually

opaque materials. The ability to sense through enclosed struc-

tures has numerous civilian and military applications, such as

search and rescue operations in environmental disasters and hid-

den hostage localizations in police missions [1–4]. Imaging indoor

scenes, however, is difficult due to strong front-wall electromagnetic

(EM) returns, which typically dominate the backscattered radar

targets [5–7]. Hence, prior to image reconstruction, wall clutter mit-

igation needs to be performed for target detection and localization.

Early TWRI techniques for stationary targets [8–11] assume

having the data collected from an empty scene without targets. The

empty-scene data is used to subtract wall clutter. This approach is ef-

fective for clutter mitigation, but is infeasible in practice. Therefore,

several techniques have been developed for wall clutter reduction

without having recourse to an empty scene [5–7]. In [5], a spatial

filtering (SF) technique was used for wall-clutter mitigation. This

method considers the invariant property of the wall reflections and

uses a notch filter for removing low spatial frequency signals con-

taining wall contributions. In [6], a subspace projection (SP) method

was developed to segregate the target returns from the wall reflec-

tions. The SP technique exploits the strength of wall reflections over

that of the target signals. It applies singular value decomposition

(SVD) to the radar signal matrix to estimate the wall subspace,

which is used for orthogonal projection to remove the wall reflec-

tions. In [7], a sparse Bayesian learning technique was proposed

to determine the wall subspace from the received data adaptively.

These approaches, however, are not suitable for compressive sens-

ing (CS) operations; they consider only the full sensing mode and

require full data measurements for effective wall clutter mitigation.

Recent approaches were proposed for enhanced TWRI using

compressive sensing (CS) framework [12, 13]. It has been shown

in [14–16] that CS allows a high-resolution scene reconstruction

even if data measurements are reduced. Before using CS, wall clutter

needs to be removed. However, because of missing measurements,

existing wall clutter mitigation techniques are not as effective if ap-

plied directly to the compressed measurements. To overcome this

issue, wall clutter alleviation in the CS context typically consists of

two stages [14–17]: (i) antenna signal recovery and (ii) wall clutter

suppression. Before using a wall clutter mitigation technique, the an-

tenna signal recovery is performed using incomplete measurements.

In other words, the two-stage clutter suppression technique allevi-

ates the effects of wall reverberations by first estimating missing

measurements and then applying a wall clutter mitigation method

to the recovered data. However, they may face the issue of multi-

stage uncertainties because the signal reconstruction and wall clutter

suppression tasks are performed separately.

This paper introduces a low-rank matrix completion (LR-MC)

approach for wall clutter mitigation in compressive TWR sensing.

The proposed approach reformulates the problem of wall clutter mit-

igation as a regularized least squares (LS) optimization problem,

where the objective function comprises an LS term and a nuclear-

norm penalty term. The LS term measures the error bound, and the

nuclear-norm term is a relaxed regularization for the low-rank prop-

erty introduced over the wall-clutter matrix. Given the radar data

matrix containing missing measurements, the goal is to estimate a

rank-deficient matrix capturing the wall reflections. This paper pro-

poses an iterative shrinkage algorithm, based on the proximal gradi-

ent technique to solve the optimization problem, yielding the clutter-

free signals used for image reconstruction.

The remainder of the paper is organized as follows. Section 2

introduces the TWRI model. Section 3 presents the proposed LR-

MC approach for clutter mitigation in CS TWRI. Section 4 presents

experimental results. Section 5 gives concluding remarks.

2. THROUGH-WALL RADAR SIGNAL MODEL

This section presents briefly the signal model for a monostatic

stepped-frequency radar system used to image targets situated in an

indoor scene. The scene consisting of P targets is sensed by mov-
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ing a transceiver parallel to the wall, synthesizing N -element array

antenna. Each antenna transceives a stepped-frequency signal com-

prising M frequencies equispaced among the bandwidth. Let zm,n

denote the m-th frequency signal received by the n-th antenna. The

signal zm,n is modeled as the superposition of the wall reflection

zwm,n, target return ztm,n, and noise υm,n:

zm,n = zwm,n + ztm,n + υm,n. (1)

The wall reflection zwm,n is given by

zwm,n =

R
∑

r=1

σware
−j2πfmτr

n,w , (2)

whereR denotes the number of wall reverberations, σw is the reflec-

tivity of the wall, ar is the path loss factor of the r-th wall return,

and τrn,w is the propagation delay of the r-th wall reverberation. The

target signal is expressed as

ztm,n =
P
∑

p=1

σpe
−j2πfmτn,p , (3)

where σp is the reflectivity of the p-th target, and τn,p is the signal

travel time from the n-th antenna to the p-th target.

For image formation, the scene is divided into a rectangular grid

consisting of Q pixels. Let sq denote a weighted indicator function

representing the p-th target reflectivity:

sq =

{

σp, if the p-th target occupies the q-th pixel;

0, otherwise.
(4)

Let τn,q denote the focusing delay between the n-th antenna and the

q-th pixel. Assuming the target comprising points located precisely

on the image pixels, from (3) the target signal at the n-th antenna is

expressed in matrix-vector form:

z
t
n = Ψn s, (5)

where ztn = [zt1,n, . . . , z
t
M,n]

T , Ψn ∈ C
M×Q with the (m, q)-th

entry given byψn(m, q) = exp(−j2πfmτn,q), and s = [s1, . . . , sQ]
T .

Stacking all measurements collected from the N antennas yields

z
t = Ψ s, (6)

where zt=[(zt1)
T , . . . , (ztN )T ]T , and Ψ=[ΨT

1 , . . . ,Ψ
T
N ]T .

From (6), the target image s can be recovered from the target

signal zt using CS technique or delay-and-sum (DS) beamforming.

The CS technique promotes sparsity of the image s and recovers

it by solving an ℓ1-regularization problem. The DS beamforming

method is only effective if full measurements are attained. Note that

the target signal zt is unavailable in practice. Instead, we have only

the radar signal z, which is the target signal corrupted by the wall

clutter zw and noise υ. Therefore, before image reconstruction, the

target signal needs to be segregated from the wall clutter. Wall clut-

ter mitigation techniques, such as SF [5] or SP [6], can be used if

the same frequency measurements are available along the antennas.

In general CS context, however, only a subset of frequency samples

is collected, which may vary from one spatial position to another.

To tackle this issue, two-stage wall clutter rejection approaches have

been developed, where the missing measurements are first estimated,

followed by wall clutter mitigation applied to the recovered measure-

ments. The issue with the two-stage approach is that the performance

is affected by the accuracy of the recovered signals. In this paper, the

wall clutter removal task is formulated as a LR-MC problem, which

is presented in the following sections.

3. LOW-RANK MATRIX COMPLETION TWRI

This section describes a LR-MC approach for clutter mitigation in

CS TWRI. First, the received measurements along different antennas

are represented in matrix-form. Then, the task of estimating the wall

reflections is cast as a penalized LS minimization problem, where

the nuclear-norm is enforced on the wall-clutter matrix. The formu-

lation of the optimization problem is presented in the next subsec-

tion. Then, in Subsection 3.2, an algorithm is introduced for solving

the minimization problem.

3.1. Formulation of LR-MC problem

The radar signals received by all N antennas at M frequencies can

be represented in matrix-form, as see Eq. 1,

Z = Z
w + Z

t +Υ, (7)

where Z = [zm,n], Z
w = [zwm,n], Z

t = [ztm,n], and Υ = [υm,n]
denote the M × N matrices containing, respectively, the antenna

signals, the wall clutter, the target signals, and the noise.

In a compressed sensing TWRI scenario, we assume that only a

reduced subset of K measurements (K ≪M ×N ) is acquired. Let

Φ ∈ R
K×MN denote a selection matrix. It has only one non-zero

element (equal to 1) in each row indicating the selected frequency

for a particular antenna. The measurement vector y ∈ C
K can be

expressed as

y = Φ vec(Z) = A(Z). (8)

Here, vec(Z) denotes the vectorization operator stacking the columns

of Z into a composite column vector. Note that Z can be obtained

from y as Z = mat(Φ† yl) = A
∗(y), where mat denotes the op-

erator reshaping a column vector of MN elements into an M ×N
matrix, and † is the pseudo-inverse operator.

Given the measurement vector y, the aim is to recover the wall-

clutter matrix Zw, exploiting its low-rank representation. The jus-

tification is in TWRI, the wall returns reside in a low-dimensional

subspace [18, 19]. An estimate of Zw is obtained by solving the

following MC problem:

min
Zw

‖Zw‖∗ subject to ‖y −A(Zw)‖22 ≤ ǫ. (9)

In (9), ‖Zw‖∗ denotes the nuclear-norm (the sum of the singular val-

ues of Zw, and ǫ is a noise bound. The nuclear-norm regularization

is the convex relaxation of rank minimization. Here, the condition

for the recovery of low-rank matrix Zw is guaranteed because the

entries of Φ are random, and thus A satisfies the restricted isometry

property (RIP) constraint [20]. To solve Problem (9) efficiently, it

can be cast into an unconstrained form or its Lagrangian version:

min
Zw

f(Zw) =
1

2
‖y −A(Zw)‖22 + γ ‖Zw‖∗ , (10)

where γ is a positive parameter. Convex analysis can be used to

show the equivalence between of the solutions of (9) and (10). The

next subsection introduces an iterative algorithm that can estimate

the wall clutter Zw by minimizing f(Zw).

3.2. Iterative algorithm

This subsection describes an iterative algorithm to solve Problem (10).

First, we consider the more generic case of minimizing a composite

objective function:

min
x

f(x) = g(x) + γ h(x), (11)

1609



where g(x) is convex, differentiable, and smooth (the quadratic term

in (10)) and h(x) is convex but not necessary smooth (the nuclear

norm in (10)). This problem is solved efficiently using proximal

gradient technique. Let xi be an estimate of the solution at the i-th
iteration. Then, the next estimate of the minimizer is obtained by

solving:

xi+1 = argmin
x

1

2
‖ui − x‖22 + γα h(x), (12)

where ui = xi − α∇g(xi). Here, ∇g(xi) denotes the gradi-

ent of g(x) evaluated at the current estimate xi. When ∇g is a

Lipschitz continuous function with constant C, this method con-

verges if α ∈ (0, 1/C]. This generic optimization technique and

its convergence guarantees have been widely used to solve the min-

imization problem (11) under different names: proximal gradient

method [21], thresholded Landweber iteration [22], iterative shrink-

age/thresholding [23], or separable approximation [24].

Here we use the iterative technique (12) to solve the problem in

(10), i.e., minimizing f(Zw). Let Zw
i denote an estimate of the so-

lution at the i-th iteration. The next estimate is obtained by solving:

Z
w
i+1 = argmin

Zw

1

2
‖Zi − Z

w‖2F + γα‖Zw‖∗, (13)

where ‖ · ‖F is the Frobenius norm, and Zi plays the role of ui in

(12),

Zi=Z
w
i − αA

∗(A(Zw
i )− y). (14)

A typical condition ensuring convergence of {Zw
i } to a minimizer

of (10) is to require that α ∈ (0, 1/‖Φ‖22]. Hereafter, ‖Φ‖2 denotes

the spectral norm of matrix Φ (i.e., maximum singular value of the

matrix).

The task now is to solve the relaxed rank-minimization prob-

lem (13). In this paper, Problem (13) is solved efficiently using the

singular value soft-thresholding (SVT) technique, which provides a

closed-form solution by the following theorem [25, 26]:

Theorem 1 For each τ ≥ 0 and Z ∈ C
M×N , the SVT operator

Sτ (Z) obeys

Sτ (Z) = argmin
Zw

1

2
‖Z− Z

w‖2F + τ ‖Zw‖∗ . (15)

Theorem 1 is proved based on the concept of proximal gradient op-

erator of convex functions (here the nuclear-norm). In (15), the

SVT operator Sτ (Z) is a nonlinear function which applies a soft-

thresholding at level τ to the singular values of the input matrix Z.

Defining a standard elementwise soft-thresholding operator,

Tτ (x) = sgn(x)max(|x| − τ, 0) =
x

|x|
max(|x| − τ, 0), (16)

the SVT operator is computed as

Sτ (Z) = U Tτ (Λ)VH , (17)

where Z = U Λ VH is the SVD of Z. Note that when applied

to vectors or matrices, the soft-thresholding operator Tτ (·) performs

entrywise. Using Theorem 1, the solution to Problem (13) is given

by

Z
w
i+1 = Sγα(Zi). (18)

The iterative steps for solving Problem (10) are provided in

Algorithm 1. This algorithm takes an input measurement set y, the

parameters α, γ, and a predefined tolerance tol. The parameter α is

regarded as a gradient stepsize and set to the largest possible value

for accelerated convergence, whereas the regularization parameter

γ is problem-dependent and needs to be tuned appropriately. In

the processing steps, this algorithm performs a gradient evaluation

(Step 2) and uses the resultant matrix as input for wall clutter es-

timation (Step 3) via SVT technique. The algorithm stops when

it converges to a local optimum. In practice, the algorithm termi-

nates when the relative change of the objective function becomes

negligible (Step 4).

Algorithm 1: Proximal gradient iterative estimations of wall clutter

in compressive TWRI.

1) Initialization: Set Zw
0 ← A

∗(y), and i← 0.

2) Perform gradient splitting using (14):

Zi ← Zw
i − αA

∗(A(Zw
i )− y).

3) Estimate wall component using (18):

Zw
i+1 ← Sαγ(Zi).

4) Evaluate the cost function f(Zw
i+1) using (10).

If
|f(Zw

i+1)−f(Zw
i )|

|f(Zw
i
)|

< tol then terminate the algorithm,

otherwise increment i← i+ 1 and go to Step 2.

For image reconstruction, the estimated wall clutter is sub-

tracted from the compressed measurements to obtain the clutter-free

data. Let Ẑw denote the estimated clutter matrix as the output of

Algorithm 1. From (6), (7), and (8), we can formulate a linear model

relating the target measurement vector yt to the target image s:

y
t = y −Φ vec(Ẑw) = ΦΨ s+ υ, (19)

where we have defined vec(Zt) = Ψ s and Φ vec(Υ) = υ. Now

a sparse image of the indoor target s is obtained by solving the fol-

lowing ℓ1 minimization:

s = argmin
s

1

2

∥

∥y
t −ΦΨ s

∥

∥

2

2
+ λ ‖s‖1 . (20)

Note that Problem (20) can be solved efficiently using the proximal

gradient technique described in (11) and (12). Here, we apply the

soft-thresholding operator (16) to the auxiliary variable obtained in

a similar manner to (14).

4. EXPERIMENTAL RESULTS

This section describes experimental results obtained using electro-

magnetic data. The datasets were acquired using the XFdtd soft-

ware1 with Finite Difference Time Domain technique. Data genera-

tion used for experiments is presented in Subsection 4.1, and exper-

imental results are given in Subsection 4.2.

4.1. Data generation

Data acquisition was conducted using a stepped-frequency synthetic

aperture radar system. A linear antenna array was synthesized by

moving the transceiver parallel to a concrete wall with 0.15 m thick-

ness, at a standoff distance of 1 m. The antenna array has 51 ele-

ments, with inter-element distance of 0.024 m. The scene is imaged

by transceiving a stepped-frequency signal of 1 GHz bandwidth,

having 334 steps with a stepsize of 3 MHz. Fig. 1 shows the scene

layout containing the front wall and two dihedral targets.

1Website: www.remcom.com
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Fig. 1. Through-wall radar data collection: (a) geometric scene de-

sign, (b) top-view of the indoor scene.

4.2. Experimental results

A reduced dataset accounting for only 50% of the full measurements

is used for clutter suppression and image formation. The dataset was

generated by randomly selecting only 167 (50%) of total frequen-

cies from each antenna locations; the frequency measurements dif-

fer across antennas. Input parameters for the LR-MC algorithm are

chosen as follows. The gradient stepsize α is set to α = 1/‖Φ‖22
for accelerated convergence. The regularization parameter γ is se-

lected as γ = 10−2‖A∗(y)‖2. The algorithm is deemed to have

converged if the relative change of the objective function is smaller

than tol = 10−4 (see Step 4 in Algorithm 1). For comparison, two-

stage approaches, signal estimation followed by wall-clutter mitiga-

tion, are implemented on the same dataset. In these two-stage ap-

proaches, the missing measurements are first recovered, followed by

a SF [5] or a SP technique [6] for wall-clutter mitigation. The target

image is formed by solving the ℓ1 minimization problem (20).

Fig. 2 shows the images formed using different clutter mitiga-

tion methods. Without clutter removal, strong wall reverberations

obscure the targets, making target identification very difficult, as il-

lustrated in Fig. 2(a). Figs. 2(b) and (c) present the images recon-

structed after using the two-stage signal estimation followed by SF

and SP for clutter reduction, respectively. Although the wall clutter

mitigation techniques remove the strong wall reflections, the formed

images still contain residual clutter. By contrast, Fig. 2(d) illus-

trates the image formed after the proposed LR-MC method. It can

be observed that the targets are well localized and the clutter is sig-

nificantly suppressed.

To quantify the performances of the different clutter mitigation

methods, the performance measure target-to-clutter ratio (TCR) is

used. Let At and Ac be, respectively, the target and clutter regions

of the formed image I , and let Nt and Nc denote, respectively, the

number of target and clutter pixels. The TCR (in dB) is defined as

TCR = 10 log10(

1
Nt

∑

q∈At
|Iq|

2

1
Nc

∑

q∈Ac
|Iq|2

). (21)

Note that the clutter region is considered as the whole image exclud-

ing the target region. Table 1 lists the TCRs of the images depicted

in Fig. 2. It can be seen that the LR-MC approach yields the high-

est TCR value (35.56 dB) among the tested clutter mitigation tech-

niques.

 !"  #"

 $"  %"

Fig. 2. Images reconstructed using different wall-clutter mitigation

techniques with 50% of the total measurements: (a) without clut-

ter mitigation, (b) two-stage signal estimation & spatial filtering, (c)

two-stage signal estimation & subspace projection, and (d) proposed

LR-MC approach.

Table 1. TCR of the images reconstructed after applying different

clutter mitigation approaches using 50% data measurements.

Wall clutter mitigation method TCR (dB)

Proposed low-rank matrix completion method 35.56

Two-stage signal estimation & subspace projection 24.11

Two-stage signal estimation & spatial filtering 21.49

Without clutter mitigation -4.02

5. CONCLUSION

This paper presented a low-rank matrix completion approach for re-

moving wall clutter in compressive TWRI. The task of wall-clutter

mitigation is formulated as a nuclear-norm regularized least squares

minimization problem. An iterative algorithm based on the proximal

gradient technique is developed to solve the minimization problem,

capturing the wall reflections. Experimental results using simulated

EM radar data have confirmed the effectiveness of the proposed ap-

proach. It mitigates wall reflections in the presence of missing mea-

surements. The proposed LR-MC model is more robust than the

existing two-stage wall clutter mitigation methods in a CS context;

the LR-MC model estimates the wall clutter more precisely and en-

hances the quality of indoor image reconstruction.
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