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ABSTRACT

Acquiring high-resolution hyperspectral (HS) images is a very
challenging task. To this end, hyperspectral pansharpening tech-
niques have been widely studied, which estimate an HS image of
high spatial and spectral resolution (high HS image) from a pair
of an HS image of high spectral resolution but low spatial reso-
lution (low HS image) and a high spatial resolution panchromatic
(PAN) image. However, since these methods do not fully utilize the
piecewise-smoothness of spectral information on HS images in es-
timation, they tend to produce spectral distortion when the low HS
image contains noise. To tackle this issue, we propose a new hy-
perspectral pansharpening method using a spatio-spectral regulariza-
tion. Our method not only effectively exploits observed information
but also properly promotes the spatio-spectral piecewise-smoothness
of the resulting high HS image, leading to high quality and robust es-
timation. The proposed method is reduced to a nonsmooth convex
optimization problem, which is efficiently solved by a primal-dual
splitting method. Our experiments demonstrate the advantages of
our method over existing hyperspectral pansharpening methods.

Index Terms— hyperspectral pansharpening, spatio-spectral to-
tal variation, primal-dual splitting

1. INTRODUCTION

A hyperspectral (HS) image is a spatio-spectral datacube that con-
tains rich information on invisible light and narrow wavelength inter-
vals. Since HS images reveal the intrinsic characteristics of scene ob-
jects and environmental lighting, hyperspectral imaging is a promis-
ing research topic and offers many applications in a wide range of
fields, spanning from remote sensing, geoscience and astronomy to
biomedical imaging and signal processing [1, 2].

Essentially, it is very difficult to capture an HS image of high
spatial and spectral resolution (we call high HS image). This is be-
cause the amount of incident energy is limited, and there are critical
tradeoffs between the spatial resolution and the spectral resolution
of HS imaging systems. On the other hand, such a high HS image
can be a key item in many applications. To resolve this dilemma, hy-
perspectral pansharpening techniques have been studied (see com-
prehensive review papers [3, 4] and references therein).

In hyperspectral pansharpening, a high HS image is estimated
from a pair of an HS image of high spectral resolution but low spa-
tial resolution (we call low HS image) and a high spatial resolution
panchromatic image (we call PAN image). Hyperspectral pansharp-
ening methods can be roughly classified into two groups. The first
group contains the methods of using Principal Component Analysis
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(PCA) [5, 6], Gram-Schmidt (GS) [7, 8] and multiresolution anal-
ysis (MRA) [9–11]. The merit of these methods are low compu-
tational cost and relatively easy implementation. However, since
these methods do not utilize a-priori knowledge, they are very sen-
sitive to noise and are difficult to achieve high-quality estimation.
Meanwhile, the methods in the second group [12–15] are based on
variational approaches, i.e., estimating a high HS image by solving
optimization problems. In general, these methods yield better re-
sults than the methods in the first group because they use a-priori
knowledge on HS images, such as spatial smoothness and low di-
mensionality. However, they do not give due consideration to the
piecewise-smoothness of the spectral information of the resulting
high HS image, so that they tend to produce spectral distortion when
the low HS image contains noise.

To overcome this difficulty, we propose a novel hyperspectral
pansharpening method built upon a newly-formulated convex opti-
mization problem. The objective function of the problem consists
of a spatio-spectral regularization term and an edge similarity term
with a PAN image. In addition, two hard constraints are imposed
on the problem: data-fidelity to a low HS image and a dynamic
range constraint. This problem formulation not only fully exploits
the spectral information on the low HS image and the spatial in-
formation on the PAN image but also properly promotes the spatio-
spectral piecewise-smoothness of the resulting high HS image. After
reformulation, the problem can be efficiently solved by a primal-
dual splitting method [16], which is a proximal splitting algorithm
and has been successfully applied to image restoration [17–20]. Our
experiments illustrate the advantages of the proposed method over
existing hyperspectral pansharpening methods.

2. PROPOSED METHOD

2.1. Observation Model
Let ū ∈ RNB be a true high HS image with N pixels and B spectral
bands. In hyperspectral pansharpening, a low HS image v and a
PAN image p are assumed to be given with the observation model:

v = SBū+ n ∈ R
NB
r , (1)

p = Rū ∈ RN , (2)

where S ∈ R
NB
r

×NB is a downsampling matrix with a down-
sampling rate of r (N is divisible by r), B is a blur matrix, n is
an additive white Gaussian noise with standard deviation σ, and
R ∈ RN×NB is a matrix that represents the spectral response of
the PAN image (R calculates weighted average along the spectral
direction). This model assumes that the low HS image contains con-
siderable noise, which is a natural situation in hyperspectral imagery.
Existing hyperspectral pansharpening methods are also based on the
same or very similar model.
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2.2. Problem Formulation

Based on the model in Sec. 2.1, we formulate hyperspectral pan-
sharpening as the following convex optimization problem:

min
u

λ∥Du−DMp∥1,2 + SSTV(u)

s.t.
[

SBu ∈ Bv
2,ε := {x ∈ R

NB
r |∥x− v∥ ≤ ε},

u ∈ [µmin, µmax]
NB ,

(3)

where D = (D⊤
v D

⊤
h )

⊤ ∈ R2NB×NB is a spatial difference opera-
tor with Dv and Dh being vertical and horizontal difference opera-
tors respectively, ∥ · ∥1,2 is the mixed ℓ1,2 norm, and M ∈ RNB×N

is a linear operator that replicates the PAN image B times along the
spectral direction.

The first term in Prob. (3) is originally proposed in [21], which
evaluates edge similarity between the high HS image of interest and
the PAN image. Specifically, we can assume that the non-zero differ-
ences of the high HS image are sparse and correspond to edges, and
that their positions should be the same as those of the PAN image.
Hence, evaluating their errors by the mixed ℓ1,2 norm is a reasonable
approach for exploiting the spatial information on the PAN image.
The second term in (3) is the spatio-spectral total variation (SSTV)
proposed in [22] for HS image denoising, defined by

SSTV(u) := ∥DDbu∥1,

where Db is a spectral difference operator, and ∥ · ∥1 is the ℓ1
norm. This regularization evaluates the spatio-spectral piecewise-
smoothness of an HS image, and it has been shown to be very
effective in HS image denoising, so that the use of SSTV would ro-
bustify hyperspectral pansharpening against spectral distortion when
the low HS image contains noise. The first constraint in (3) serves as
data-fidelity to the low HS image v and is defined as the v-centered
ℓ2-norm ball with the radius ε > 0. As mentioned in [23–27], such
a hard constraint facilitates the parameter setting because ε has a
clear meaning. The second constraint in (3) represents the dynamic
range of HS images with µmin < µmax.

2.3. Optimization

Since Prob. (3) is a convex but highly nonsmooth optimization prob-
lem, a suitable iterative algorithm is required to solve it. In this
paper, we adopt a primal-dual splitting method [16]. It can solve
(possibly nonsmooth) convex optimization problems of the form:

min
u

g(u) + h(Lu), (4)

where g and h are proper lower semicontinuous convex functions,
and L is a linear operator. Here, we assume that g and h are prox-
imable, i.e., the proximity operators1 [28] of g and h are computable.

For any y(0) and γ1, γ2 > 0 satisfying γ1γ2∥L∥2op ≤ 1 (∥ · ∥op
is the operator norm), the algorithm is given by⌊

u(n+1) = proxγ1g
(u(n) − γ1L

⊤y(n)),

y(n+1) = proxγ2h∗(y(n) + γ2L(2u
(n+1) − u(n))),

(5)

The function h∗ is the convex conjugate of h, and the proximity
operator of h∗ is available via that of h [29, Theorem 14.3(ii)] as
follows:

proxγh∗(x) = x− γ prox 1
γ
h(

1
γ
x). (6)

1The proximity operator of index γ > 0 of a proper lower semicontinuous
convex function f is defined by proxγf (x) := argmin

y
f(y)+ 1

2γ
∥y−x∥2.

In what follows, we reformulate Prob. (3) into Prob. (4) to solve it
by the primal-dual splitting method.

First, we introduce the indicator functions of the two constraints
in (3) to put them into the objective function. The indicator function
of a nonempty closed convex set C is defined by

ιC(x) :=

{
0, if x ∈ C,
∞, otherwise. (7)

Then, Prob. (3) can be rewritten as

min
u

λ∥Du−DMp∥1,2 + ∥DDbu∥1

+ ιBv
2,ε

(SBu) + ι[µmin,µmax]NB (u). (8)

Note that Prob. (3) and Prob. (8) are equivalent from the definition
of the indicator function.

Then, by letting

g : RNB → R : u 7→ ι[µmin,µmax]NB (u),

h : R(4+
1
r )NB → R ∪ {∞} :

(y1,y2,y3) 7→ λ∥y1 −DMp∥1,2 + ∥y2∥1 + ιBv
2,ε

(y3),

L : RNB → R(4+
1
r )NB : u 7→ (Du,DDbu,SBu),

Prob. (8) is reduced to Prob. (4). Using (6), the resulting algorithm
for solving (3) is summarized in Algorithm 1.

Algorithm 1: Primal-dual splitting algorithm for Prob. (3)

input : u(0), y(0)
1 , y(0)

2 , y(0)
3

1 while A stopping criterion is not satisfied do do
2 u(n+1) = proxγ1ι[µmin,µmax]NB

(u(n) − γ1(D⊤y
(n)
1 +

D⊤
b D⊤y

(n)
2 +Φ⊤y

(n)
3 ));

3 y
(n)
1 ← y

(n)
1 + γ2D(2u(n+1) − u(n));

4 y
(n)
2 ← y

(n)
2 + γ2DDb(2u

(n+1) − u(n));

5 y
(n)
3 ← y

(n)
3 + γ2SB(2u(n+1) − u(n));

6 y
(n+1)
1 = y

(n)
1 − γ2 prox λ

γ2
∥·−DMp∥1,2

( 1
γ2

y
(n)
1 );

7 y
(n+1)
2 = y

(n)
2 − γ2 prox 1

γ2
∥·∥1 (

1
γ2

y
(n)
2 );

8 y
(n+1)
3 = y

(n)
3 − γ2 prox 1

γ2
Bv
2,ε

( 1
γ2

y
(n)
3 );

9 n← n+ 1;

Let us explain how to compute each step of Alg. 1. Since the
proximity operator of the indicator function of C is equivalent to the
metric projection2 onto C, the proximity operators in steps 2 and 8
can be computed as follows: for i = 1, . . . , NB

[proxγι
[µmin,µmax]NB

(x)]i = [P[µmin,µmax]NB (x)]i

= min{max{xi, µmin}, µmax},

proxγιBv
2,ε

(x) = PBv
2,ε

(x) =

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
∥x−v∥2

, otherwise.

Meanwhile, the proximity operators of the ℓ1 norm and the mixed
ℓ1,2 norm in steps 6 and 7 are reduced to simple soft-thresholding

2Given a vector x̄ and a nonempty closed convex set C, the metric pro-
jection onto C is characterized by PC = minx ∥x− x̄∥ s.t. x ∈ C.
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Table 1. Quality measures for σ = 0.05 (left) and σ = 0.1 (right).
σ = 0.05 σ = 0.1

method CC SAM RMSE ERGAS CC SAM RMSE ERGAS
SFIM [11] 0.8758 23.08 511.4 9.310 0.6711 35.72 996.8 17.25

MTF-GLP [9] 0.8814 23.47 512.7 9.114 0.7309 34.22 888.9 14.95
MTF-GLP-HPM [10] 0.8742 23.23 524.8 9.533 0.6653 36.00 1031 17.74

GS [7] 0.8042 25.40 658.4 11.97 0.6353 38.97 1042 19.57
GSA [8] 0.8706 27.18 558.8 10.25 0.7105 40.37 998.4 18.71
PCA [5] 0.7968 25.56 677.0 12.28 0.6314 39.12 1054 19.77

GFPCA [6] 0.9264 9.097 409.6 7.087 0.9219 10.62 417.7 7.255
CNMF [15] 0.9587 9.977 322.5 5.351 0.9343 15.03 407.4 6.599

Bayesian Naive [12] 0.9517 15.23 314.3 5.686 0.8789 25.15 519.2 9.772
Bayesian Sparse [13] 0.9546 15.11 300.7 5.484 0.8807 24.98 514.0 9.708

HySure [14] 0.9645 9.306 292.2 4.990 0.9452 13.88 349.6 6.088
Proposed 0.9757 7.460 235.2 4.081 0.9691 8.739 263.7 4.604
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Fig. 1. Quality measures versus λ in (3).

type operations: for γ > 0 and for i = 1, . . . , 2NB,

[proxγ∥·∥1(x)]i = sgn(xi)max {|xi| − γ, 0} ,

[proxγ∥·∥1,2(x)]i = max

{
1− γ

(∑1
j=0 x

2
ĩ+jNB

)− 1
2
, 0

}
xi,

where sgn is the sign function, and ĩ := ((i − 1) mod NB) + 1.
Note that in step 6, we need to calculate not the proximity operator
of ∥·∥1,2 itself but that of ∥·−DMp∥1,2, which is given, using [30,
Table 10.1-i], by

proxγ∥·−DMp∥1,2(x) = proxγ∥·∥1,2(x−DMp) +DMp.

3. EXPERIMENTS

We demonstrate the advantages of the proposed method over exist-
ing hyperspectral pansharpening methods. Specifically, we exam-
ine the proposed and existing methods as follows: (i) generate a
pair low HS and PAN images from a true high HS image, (ii) add
white Gaussian noise with standard deviation σ to the low HS im-
age, (iii) estimate the true high HS image from the pair by each
method, and (iv) evaluate the estimated high HS images based on
standard quality measures (introduced later). For the true high HS
image, we used a Moffett field dataset, where we cropped a region of
size 256× 128× 176 and normalized its dynamic range into [0, 1].
The low HS and PAN images were generated based on the model in
Sec. 2.1, where the downsampling rate was set as r = 4, B was set to
a 9× 9 Gaussian blur matrix, and R was set to an weighted-average
matrix with its weights wi (i = 1, . . . , B) were defined as wi = 1,
for 1 ≤ i ≤ 41; and 0 otherwise. The above procedures follow

Wald’s protocol [31], a standard quality assessment methodology of
hyperspectral pansharpening.

For comparison, we adopted 11 existing methods: SFIM [11],
MTF-GLP [9], MTF-GLP-HPM [10], GS [7], GSA [8], PCA [5],
GFPCA [6], CNMF [15], Bayesian Naive [12], Bayesian Sparse [13]
and HySure [14]. All parameters of these methods except HySure
were set to the recommended values in a MATLAB toolbox of hy-
perspectral pansharpening distributed by the authors of [3]. For
HySure, we set its hyperparameter as λϕ = 0.1σ to enhance its
performance, and other parameters were set to the recommended
values. For our method, the parameters in (3) were set to ε =
∥v−SBū∥2 and λ = 0.3. We set the max iteration number and the
stopping criterion of the primal-dual splitting method to 5000 and
∥u(n) − u(n+1)∥2/∥u(n)∥2 < 1.0× 10−4, respectively.

For quality measures, we use Cross Correlation (CC), the Spec-
tral Angle Mapper (SAM) [32], the Root Mean Squared Error
(RMSE) and Erreur Relative Globale Adimensionnelle de synthèse
(ERGAS) [33], which are defined, respectively, by

CC(u, ū) =

1
B

∑B
j=1

∑N
i=1(ui+(j−1)N−αu,j)(ūi+(j−1)N−αū,j)√∑N

i=1(ui+(j−1)N−αu,j)2
∑N

i=1(ūi+(j−1)N−αū,j)2
,

SAM(u, ū) = 1
N

∑N
i=1 arccos

(
u⊤
i ūi

∥ui∥2∥ūi∥2

)
,

RMSE(u, ū) = ∥u−ū∥2√
NB

,

ERGAS(u, ū) = 100
r

√
1
B

∑B
j=1

∥u∗
j−ū∗

j ∥
2
2

(
1
p
1⊤u∗

j )
2′
,
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Low HS image PAN image SFIM MTF-GLP MTF-GLP-HPM GS GSA

PCA GFPCA CNMF Bayesian Naive Bayesian Sparse HySure Proposed True high HS image

Fig. 2. Resulting HS images.

where ui = [ui, ui+N , . . . , ui+(B−1)N ] ∈ RB (i = 1, . . . , N)

and u∗
j = [uN(j−1)+1, uN(j−1)+2, . . . , uN(j−1)+N ] ∈ RN (j =

1, . . . , B) are the spectral and spatial vectors of u, respectively,
αu,j =

∑N
i=1 ui+(j−1)N , αū,j =

∑N
i=1 ūi+(j−1)N and 1 =

[1, . . . , 1] ∈ RN .

Table 1 shows CC, SAM, RMSE and ERGAS of the high HS im-
ages estimated by the existing and proposed methods for σ = 0.05
and 0.1. One can see that for all the quality measures and for both
σ, the proposed method outperforms all the existing methods (note
that only for CC, higher is better). Fig. 1 plots CC, SAM, RMSE and
ERGAS of the high HS images estimated by the proposed method
versus λ in (3) (σ = 0.05 and 0.1). We found that λ ∈ [0.3, 0.5] is
a good choice in this experimental setting.

Fig. 2 depicts the estimated high HS images (σ = 0.1) as RGB
images, where R, G and B bands were set to the 16th, 32nd and 64th
bands of them. One can see that (i) most of the existing methods
produce artifacts, (ii) GFPCA, CNMF and HySure achieve relatively
good estimation but spectral information is distorted in their results.

and (iii) the proposed method has a strong ability of spatial and spec-
tral detail-preserving estimation, and the result is most similar to the
true high HS image.

4. CONCLUSION

We have proposed a new hyperspectral pansharpening method using
a spatio-spectral regularization. This method not only fully exploits
observed information but also properly promotes spatio-spectral
piecewise-smoothness, an intrinsic property of HS images, leading
to robust and effective estimation. The proposed method is reduced
to a nonsmooth convex optimization problem, and the optimization
is efficiently solved by a primal-dual splitting method. Our experi-
ments revealed the advantages of the proposed method over existing
methods.

Finally, we remark that our method can be naturally extended to
methods for fusing a pair of HS and multispectral images, which is
an interesting direction of future work.

1606



5. REFERENCES

[1] C. I. Chang, Hyperspectral imaging: techniques for spectral detection
and classification, vol. 1, Springer Science & Business Media, 2003.

[2] A. Plaza et al., “Recent advances in techniques for hyperspectral image
processing,” Remote sensing of environment, vol. 113, pp. S110–S122,
2009.

[3] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet,
J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi,
M. Simoes, et al., “Hyperspectral pansharpening: A review,” IEEE
Geoscience and remote sensing magazine, vol. 3, no. 3, pp. 27–46,
2015.

[4] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and mul-
tispectral data fusion: A comparative review of the recent literature,”
IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 2, pp. 29–
56, 2017.

[5] P. Chavez, S. C. Sides, J. A. Anderson, et al., “Comparison of three dif-
ferent methods to merge multiresolution and multispectral data- landsat
tm and spot panchromatic,” Photogrammetric Engineering and remote
sensing, vol. 57, no. 3, pp. 295–303, 1991.

[6] W. Liao, X. Huang, F. Van Coillie, S. Gautama, et al., “Processing of
multiresolution thermal hyperspectral and digital color data: Outcome
of the 2014 ieee grss data fusion contest,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 8, no.
6, pp. 2984–2996, 2015.

[7] C. A. Laben and B. V. Brower, “Process for enhancing the spatial reso-
lution of multispectral imagery using pan-sharpening,” Jan. 4 2000, US
Patent 6,011,875.

[8] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitu-
tion pansharpening through multivariate regression of ms + pan data,”
IEEE Trans. on Geosci. and Remote Sensing, vol. 45, no. 10, pp. 3230–
3239, 2007.

[9] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “Mtf-
tailored multiscale fusion of high-resolution ms and pan imagery,” Pho-
togrammetric Engineering & Remote Sensing, vol. 72, no. 5, pp. 591–
596, 2006.

[10] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanussot,
“Contrast and error-based fusion schemes for multispectral image pan-
sharpening,” IEEE Geoscience and Remote Sensing Letters, vol. 11,
no. 5, pp. 930–934, 2014.

[11] J. G. Liu, “Smoothing filter-based intensity modulation: A spectral
preserve image fusion technique for improving spatial details,” Inter-
national Journal of Remote Sensing, vol. 21, no. 18, pp. 3461–3472,
2000.

[12] R. C. Hardie, M. T. Eismann, and G. L. Wilson, “Map estimation for
hyperspectral image resolution enhancement using an auxiliary sensor,”
IEEE Trans. Image Process., vol. 13, no. 9, pp. 1174 – 1184, 2004.

[13] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Y. Tourneret, “Hyper-
spectral and multispectral image fusion based on a sparse representa-
tion,” IEEE Trans. on Geosci. and Remote Sensing, vol. 53, no. 7, pp.
3658 – 3668, 2015.

[14] M. Simões, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A con-
vex formulation for hyperspectral image superresolution via subspace-
based regularization,” IEEE Trans. on Geosci. and Remote Sensing,
vol. 53, no. 6, pp. 3373–3388, 2015.

[15] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix
factorization unmixing for hyperspectral and multispectral data fusion,”
IEEE Trans. on Geosci. and Remote Sensing, vol. 50, no. 2, pp. 528–
537, 2012.

[16] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imaging and
Vision, vol. 40, no. 1, pp. 120–145, 2010.

[17] E. Y. Sidky, J. H. Jørgensen, and X. Pan, “Convex optimization problem
prototyping for image reconstruction in computed tomography with the
chambolle–pock algorithm,” Physics in medicine and biology, vol. 57,
no. 10, pp. 3065, 2012.

[18] C. Sutour, C.-A. Deledalle, and J.-F. Aujol, “Adaptive regularization of
the nl-means: Application to image and video denoising,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3506–3521, 2014.

[19] S. Ono and I. Yamada, “Decorrelated vectorial total variation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014.

[20] S. Ono, “Primal-dual plug-and-play image restoration,” IEEE Signal
Process. Lett., vol. 24, no. 8, pp. 1108–1112, 2017.

[21] C. Chen, Y. Li, W. Liu, and J. Huang, “Image fusion with local spec-
tral consistency and dynamic gradient sparsity,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2014, pp. 2760–2765.

[22] H. K. Aggarwal and A. Majumdar, “Hyperspectral image denoising
using spatio-spectral total variation,” IEEE Geosci. and Remote Sens.
Lett., vol. 13, no. 3, pp. 442–446, 2016.

[23] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented La-
grangian approach to the constrained optimization formulation of imag-
ing inverse problems,” IEEE Trans. Image Process., vol. 20, no. 3, pp.
681–695, 2011.

[24] G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu,
“Epigraphical projection and proximal tools for solving constrained
convex optimization problems,” Signal, Image and Video Process., pp.
1–13, 2014.

[25] S. Ono and I. Yamada, “Signal recovery with certain involved convex
data-fidelity constraints,” IEEE Trans. Signal Process., vol. 63, no. 22,
pp. 6149–6163, 2015.

[26] S. Ono, “L0 gradient projection,” IEEE Trans. Image Process., vol.
26, no. 4, pp. 1554–1564, 2017.

[27] S. Takeyama, S. Ono, and I. Kumazawa, “Hyperspectral image restora-
tion by hybrid spatio-spectral total variation,” Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), pp. 4586–4590, 2017.

[28] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,” C. R. Acad. Sci. Paris Ser. A Math., vol. 255, pp.
2897–2899, 1962.

[29] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces, Springer, New York, 2011.

[30] P. L. Combettes and J. C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-point algorithms for inverse problems in science
and engineering, pp. 185–212. Springer, 2011.

[31] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of
different spatial resolutions: Assessing the quality of resulting images,”
Photogrammetric Engineering & Remote Sensing, vol. 63, no. 6, pp.
691–699, 1997.

[32] F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T.
Shapiro, P.J. Barloon, and A.F.H. Goetz, “The spectral image process-
ing system (SIPS)―interactive visualization and analysis of imaging
spectrometer data,” Remote Sensing of Environment, vol. 44, no. 2, pp.
145–163, 1993.

[33] L. Wald, “Quality of high resolution synthesised images: Is there a
simple criterion?,” in Third conference” Fusion of Earth data: merging
point measurements, raster maps and remotely sensed images”, 2000,
pp. 99–103.

1607


