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ABSTRACT 

 

Convolutional neural networks (CNNs) have proven to be an 

effective way for deep feature extraction. However, multi-

spectral and panchromatic images are susceptible to illumi-

nation unevenness and noise, and the default cross entropy 

loss function consider only the local information, resulting in 

misclassification. In this paper, we propose a novel super-

pixel-level deep neural networks for multispectral and pan-

chromatic images classification, and define a novel percep-

tual loss function via non-local spectral and structure similar-

ity to suppress the interference of unbalanced light and noise. 

We also propose the corresponding iteration optimization al-

gorithm in this paper. Experimental results show that the pro-

posed method performs better than the state-of-the-art meth-

ods. 

 

Index Terms— Perceptual loss function, Convolutional 

neural networks, Spectral similarity constraint, Structure sim-

ilarity constraint 

 

1. INTRODUCTION 

 

In recent years, very high-resolution satellites were launched 

frequently [1]. General remote sensing satellites carry both 

panchromatic and multispectral sensors. Panchromatic image 

has a high spatial resolution with only one spectral band. 

Multispectral image usually has four or eight bands, but the 

spatial resolution is four times smaller than panchromatic im-

age. To better understand the objects, multispectral and pan-

chromatic images are usually combined together for classifi-

cation [2]-[5].  

There are usually two ways used for multispectral and 

panchromatic images classification. The first one is to pan-

sharping the multispectral and panchromatic images first, and 

the fused images are used for classification (P-to-C) [6 - 9]. 

It is expected that the pan-sharpened image can improve the 

classification accuracy, however, some researchers pointed 

out that the spectral and spatial artifacts in the pan-sharpened 

image has an inevitable impact on classification accuracy [8]. 

Another line of work is to extract the features from multispec-

tral and panchromatic images first, and then fuse these fea-

tures for classification [9-14] (C-to-F). In [10], a graph cut 

approach was combined with the linear mixture model to cap-

ture the relationships between the data at different resolutions 

iteratively. In [11], convolutional neural networks were ap-

plied on multi-local regions of multispectral to exploit the 

structure information. And then panchromatic image was 

used to fine-tune the classification map. Robinson et al. [12] 

compared the effect of these two lines on the classification 

results. P-to-C methods achieved lower classification accu-

racy because the results were affected by the pan-sharpened 

image, such as the spectral distortion problem. The method 

proposed in this paper belongs to the C-to-F methods.   

We note from the above methods that pixel-based meth-

ods always lead to the noisy classification results, and super-

pixel-level classification provides a solution to this problem 

[11]. Hence, in this paper, the samples are generated based on 

the superpixels to avoid noisy classification results, and su-

perpixels are the basic classification units. And then, deep 

neural networks are utilized to extract the features from mul-

tispectral and panchromatic images, respectively. Recently, 

deep learning has proven to be effective in feature learning 

[13-17]. Convolutional neural networks (CNNs) are one kind 

of deep neural networks, which have a two-dimensional (2D) 

form, and can better extract the spatial information. Hence, 

2D CNNs [14] are used to extract the spatial feature from 

panchromatic image in our method. Multispectral image is a 

3D spectral-spatial cube, 2D CNNs cannot exploit the space 

cube structure adequately, and therefore 3D CNNs [18] are 

applied on multispectral image to extract the spatial-spectral 

feature. Finally, the features extracted from multispectral and 

panchromatic images are fused together by the designed fu-

sion rule. 

Specially, in our previous work [19], superpixel-based 

3D CNNs are used for hyperspectral image classification. In 

this work, traditional cross-entropy loss was used to compare 

the difference between the output and ground-truth. Hence, 

only the local information was considered for classification. 

Multispectral and panchromatic images are satellite images 

with higher spatial-resolution, and therefore the local infor-

mation may not represent the characteristics of the objects ac-

curately. However, global spatial dependency of the image 

can represent more complex local relationship [20]. Actually, 

there are many similar patches in multispect- 
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Fig.1. The framework of the proposed networks. We train the 

structure feature and spectral feature using the 2D CNNs and 

3D CNNs, respectively. A perceptual loss function is defined 

by the similar samples in feature space to fully exploit the 

spectral and spatial information of multispectral and panchro-

matic images. 

 

ral and panchromatic images. These similar samples can pro-

vide more efficient constraints for local samples. The non-

local similarity constrain was usually used in image denoising 

[21] and image restoration [22], and ideal performances were 

obtained. In this paper, we train the proposed classification 

framework by an optimization perceptual loss function. If 

several samples are similar in spatial and spectral domain, 

they should also have similar characteristics in feature do-

main [23]. For each sample, we construct the spectral simi-

larity constraint from multispectral image and structure simi-

larity constraint from panchromatic image in higher-level 

feature space. These constraints can force the similar samples 

to have the same label, and increase the robustly of the pro-

posed multispectral and panchromatic images classification 

neural networks (MPCNNs). 

The rest of the paper is organized as follows: section 2 

shows the proposed model in detail. The experimental results 

are shown in section 3. Section 4 concludes this paper. 

 

2. PROPOSED MODEL  

 

2.1. Genetate superpixel-level samples 

 

Since pixel-level classification approaches always leads to 

noisy classification results, especially for high-resolution re-

mote sensing data. Hence we take superpixels as the basic 

classification units to maintain the spatial consistency in the 

classification map. Panchromatic has a high spatial resolution, 

and hence in this paper, superpixel algorithm, entropy rate 

segmentation (ERS), is applied on panchromatic images to 

generate the superpixels. And then, we map the superpix-el 

map of the panchromatic image to multispectral image to ob-

tain the low-resolution superpixel map. We take each super-

pixel as the central of a spatial window, and map the window 

to the panchromatic and multispectral images to extract the 

panchromatic and multispectral samples respectively.  

 

2.2. Image classification via optimized perceptual loss 

function  

 

In this section, we will introduce the two processes of 

MPCNNs: forward propagation and back propagation pro-

cesses. 

 

2.2.1. Forward propagation 

Take the 3D multispectral sample x and 2D panchromatic 

sample y as the inputs of MPCNNs. Since multispectral sam-

ple has a 3D form, we apply the 3D CNNs on the 3D multi-

spectral sample x to capture the deep spectral-spatial infor-

mation better.   

3 ( )MS DF G x                                (1) 

where 
3 ( )DG •  means the forward propagation process of 3D 

CNNs, and 
MSF is the deep spatial-spectral feature of multi-

spectral 3D sample. 

Panchromatic image has a 2D form, and hence 2D CNNs 

are applied on the panchromatic sample to extract more de-

tailed spatial feature. 

2 ( )PAN DF G y                              (2) 

where 
2 ( )DG •  is the forward propagation process of 2D 

CNNs, and 
PANF  is the deep spatial feature of panchromatic 

2D sample, which has the same dimension with 
MSF . 

We set two connected weight matrixes
1w  and 

2w  to 

combine the 3D spectral-spatial features and 2D detailed spa-

tial feature. And then input the combined features into soft-

max classifier. 

1 2MS PANF w F w F                            (3) 
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where   is the trainable parameters of softmax classifier, 

and ,
ˆ

i ac means the probability that the  i th  sample belongs 

to the class a . The position where the class with the maximal 

probability is set as the output label.  

 

2.2.2. Back propagation 

To train the MPCNNs, we define a novel loss function via 

nonlocal similar sample. Spatially similar samples should re-

main similar in the feature space, and hence, we design the 

spectral and spatial similar constraints on loss function to im-

prove the classification accuracy. For each sample, we search 

its spectral similar samples from the multispectral image and 

spatial similar samples from the panchromatic image, respec-

tively.  
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Although multispectral image has low spatial resolution, 

it has high spectral information. For each multispectral sam-

ple, we search its similar samples by calculating their spectral 

similarities.  
*

1 ={i+|Corr(Mean(x )-Mean(x ))<threshould}i iS 
        (5) 

where *

1S  is a set containing the spectral similar samples to

ix , i  is the subscript of the sample, and ( )Corr • is the cor-

relation coefficient operator. For each sample, we calculate 

the spatial mean value in each spectral dimension, and com-

pare the mean values of the other samples in the whole image 

by the correlation coefficient. If they have small differences 

in mean value, they are consider as spectral similar samples.  

Panchromatic image has more spatial information, and 

hence we use structural similarity (SSIM) index to evaluate 

the spatial similarity of two samples. 
*

2 ={i+|(SSIM(y ,y ))<threshould}i iS 
            (6) 

where *

2S  is a set containing the spatial similar samples to
iy

. 
According to the similar samples and ground truth of the 

training sample, the loss function is defined in Eq.(7). 

*
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         (7) 

where the first term is data term, and ,i ac is the ground truth 

label. The second term is the spectral similarity constraint, 

which means the multispectral sample and its linear weighted 

spectral similar samples are similar in 3D CNNs feature space, 

and 
*

1

1

, 3 , 3 ,= ( ) ( )i a D i a D i ai S
w G x G x   . The third term is 

the spatial structure similarity constraint, that means the pan-

chromatic sample and its linear weighted spatial structure 

similar samples are similar in 2D CNNs feature space, and 

*
2

2

, 2 , 2 ,= ( ) ( )i a D i a D i ai S
w G y G y   .   and   is intense 

parameters. And then the loss function is minimized using 

gradient descent method to update the parameters in 

MPCNNs. 

To minimize the loss function we propose an alternative 

optimization method. First, we fix the parameters in 2D 

CNNs, and minimize the first term and the second term in Eq. 

(7) to update the parameters in softmax classifier and 3D 

CNNs. 

3 3

*
1

1 , ,
, ,

1 2

3 , , 3 , 2

ˆmin min ln( )

|| ( ) ( ) ||

D D
i a i a

W G W G
i S a Class

D i a i a D i a

i S

c c

G x w G x





 

 



 

 

 


          (8) 

Second, we fix the parameters in 3D CNNs, and mini-

mize the first term and the third term in Eq.(7) to update the 

parameter in softmax classifier and 2D CNNs.  
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       (9) 

For each step, gradient descent method is applied to solve 

the minimize problem. When the training process reach the 

preset iteration times, the forward propagation process get the 

final classification results.  

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

3.1. Datasets 

 

In this section, the dataset grss_dfc_2016 [24] is used to eval-

uate the proposed model. grss_dfc_2016 dataset was pro-

vided by The 2016 IRRR GRSS Data Fusion Contest. The 

multispectral and panchromatic images were acquired by 

DEIMOS-2 satellite on March 31, 2015 and May 30, 2015 

over Vancouver, Canada. The multispectral image contains 

four spectral bands (red, green, blue, and NIR bands) at 4-m 

spatial resolution, and panchromatic image contain one band 

at 1-m spatial resolution. The level 1C image with eight clas-

ses is used for classification experiment. The size of the mul-

tispectral image is 1311 873 , and the size of the panchro-

matic image is 5244 3492 . The false color multispectral im-

age and panchromatic image are shown in Fig.2 (a) and (b). 

The ground-truth map is shown in Fig.2 (c) and the classes 

label is shown in Fig.2 (d).  

 

    

(a) (b) (c) (d) 

Fig.2. False color multispectral and panchromatic images. (a) 

False color multispectral image of level 1C image. (b) Pan-

chromatic image of level 1C image. (c) Ground-truth map. 

(d) Classes label. 

 

3.2. Experimental results of level 1C image 

 

For level 1C image, we use ERS to generate 60000 superpix-

els. 15%  of the labeled superpixels are randomly selected for 

training, and the remaining labeled superpixels are used for 

testing. Ten independent experiments are conducted, and the 

average values of overall accuracy (OA) and kappa coeffi-

cient are used to evaluate the classification results. In the 

e x p e r i me n t ,  t h e  s p a t i a l  w i n d o w s i z e  i s  s e t  a s 

31 31 . The 3D CNNs contain two convolutional layers, two 

max-pooling layers, and one full connection layer. The first 

convolutional layer has 20 filters with size 6 6 3  , and the 

second convolutional layer has 40 filters with size 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Fig.3. Classification map of level 1C image. (a) and (b) Mul-

tispectral image classification map. (c) and (d) Panchromatic 

image classification map. (e) and (f) Cross entropy loss func-

tion classification map. (g) and (h) Perceptual loss classifica-

tion map (proposed). (i) and (j) Classification map of refer-

ence [10].   (k) and (l) Classification map of [11]. 

 

Table 1. Classification evaluation of level 1C image 
Clas-
ses 

MS PAN 
Corss-en-

tropy 
Percep-
tual loss 

[10] [11] 

1 82.12 47.20 68.26 85.63 91.27 71.39 

2 97.67 95.51 97.77 97.39 52.44 98.94 

3 96.39 77.26 88.98 97.14 86.35 89.94 

4 91.38 94.06 92.57 95.41 62.61 94.71 

5 98.2 98.94 98.77 98.82 80.23 98.96 

6 70.05 67.83 74.5 77.29 35.60 69.26 

7 96.29 91.15 96.7 97.53 64.64 98.19 

8 79.43 80.19 78.95 82.16 83.79 78.49 

OA 94.80 92.67 94.93 96.41 68.94 95.62 

kappa 93.16 90.34 93.32 95.25 60.99 94.23 

 

6 6 1  . The full connection layer has 300 units. The 2D 

CNNs contains two convolutional layers with 20 and 40 fil-

ters. The size of each filter is 6 6 . The parameters of  and 

 are set as 0.05 and 0.03, respectively. The threshold in Eq. 

(5) and Eq.(6) is set as 0.98. If the object does not have its 

similar samples, the second term and the third term in Eq. (7) 

will be equal to 0, and the classification only relies on the 

object itself. For the compared methods, the parameters are 

selected as default in their papers. The classification results 

are shown in Fig.3. First, we only use single multispectral or 

panchromatic image for classification, and the results are 

shown in Fig.3 (a)-(d). Fig.3 (a) and (c) are the classification 

maps of the ground-truth area, and Fig.3 (b) and (d) are the 

classification maps of the whole image. Multispectral image 

has low spatial resolution, but high spectral resolution. Hence 

its classification map has better spatial consistency (circle 

area), but some details is lost (square area). In contrast, pan-

chromatic image contains more detail information, but too 

much details lead to noises in the classification map. Consider 

the advantages of multispectral and panchromatic images, we 

combine them by traditional cross-entropy loss and the pro-

posed perceptual loss for classification, which are shown in 

Fig.3 (e)-(h). Both loss functions can better combine the ad-

vantages of multispectral and panchromatic images, and how-

ever, perceptual loss function keeps more detailed infor-

mation, meanwhile, obtains a smoother classification map. 

We also compare the proposed model with references [10] 

and [11]. Reference [10] proposed a graph cut method to 

Markovian energy minimization to generate classification 

map on the highest resolution image, and effectively estab-

lished the relationship between different resolutions. How-

ever, this paper belongs to the pixel-level non-deep method, 

and hence, the classification map shows the noisy classifica-

tion result in the regions where buildings are clustered (circle 

region in Fig. 3 (j)). Reference [11] proposed multiple local 

CNN model for classification, which is the deep-based clas-

sification method. This model captures the information of 

multiple local regions, and uses deep learning to extract more 

robust features, thereby improving the regional consistency 

of the classification map. However, due to the global infor-

mation is not considered in the classification process, some 

small independent objects are misclassified (rectangular re-

gion in Fig. 3 (l)). Table 1 shows the classification evaluates 

of the compared methods. It is shown that the proposed model 

achieves higher performance in most classes.     

 

4. CONCLUSION 

 

In this paper, we propose a superpixel-level multispectral and 

panchromatic images classification framework. Meanwhile, 

a perceptual loss function is defined to capture the spectral 

and structure similarities. An iteration optimization algorithm 

is proposed to solve the perceptual loss. The experimental re-

sults show that the proposed model can effectively classify 

high-resolution remote sensing images with higher accura-

cies and better regional consistency.  
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