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ABSTRACT
An effective representation model plays an important role in
the visual tracking, as it relates to how the most meaningful
information are recognized and understood in the dictionary
space. However, it is difficult to know the structure and
the weights of tracking objects in advance. In addition,
how to balance the adaption and robustness in tracking
algorithms remains a nontrivial problem. In this paper, we
propose a robust visual tracker based on adaptive structure-
enhanced regularizations, and achieve a sequential Monte
Carlo searching via simplified particle filters. Specifically,
multiple atomic norms are incorporated in the cost function
in the target dictionary space, and their weights are updated
adaptively during the detection step between each frame.
Sparse and low-rank structures as well as other atomic norms
enhance the robustness by capturing various features mean-
while ruling out outliers, and the velocity of moving objects
are considered accordingly in the probabilistic distribution
of particles. Moreover, the algorithm has been accelerated
by adopting prefilters as classifiers for target particles using
pixel variances in colours and intensities, which ensures
a real-time tracking in practice. On challenging tracking
datasets, the proposed approach show advantages in tracking
fast-moving objects and favorable performance against other
10 state-of-the-art visual trackers.

Index Terms— Visual tracking, atomic norm representa-
tion, dictionary learning, particle filter.

I. INTRODUCTION
Visual tracking is an attractive technology owing to its

wide applications including vehicle tracking [1], surveil-
lance [2], medical diagnosis [3] and video information
compression [4]. Detection algorithm and sparse signal
processing [5]–[7] have also been greatly developed. The
accuracy of the parameters directly affects the performance
of target detection, and the acquisition of parameters is
usually achieved by feature matching algorithm. Commonly
features are texture feature, SIFT feature, SURF feature,
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Harris-Laplacian. Zdenek Kalal et al. [8] propose a detection
algorithm based on tracking-learning-detection (TLD) with
the detection algorithm to solve the problem of the tracked
object shape change and partial occlusion. Oron et al. [9]
use the TLD framework for pedestrian target tracking.

However, there still exist challenges in practical applica-
tions [10]–[12]. It is difficult to obtain the tracking target
structures in advance, and the performance of tracking can
be significantly affected by lightning changes, morphological
changes, background noise and other factors. These condi-
tions are different in various scenarios. In addition, different
applications have distinct requirements in robustness, accura-
cy and computational complexity. In this paper, we propose
a novel approach for visual tracking. Firstly, we extend the
regularizations in the estimation equation to multiple atomic
norms, which imposes an adaptive penalties on the dictionary
spaces and enhances the capability of the tracker in recogniz-
ing targets with unknown structures. Secondly, the weights of
each penalty terms in the detection optimization are updated
between each adjacent frame, in which a gradual changing
target can be comprehensively considered. Furthermore, a
simplified particle filter is implemented to capture the target
probabilistic distributions by building particles classified in
pixel colours, intensities, and target velocities. It strengthens
the approach to the real-time efficiency. Finally, the tracking
accuracy of our algorithm is verified by experiments on a
large number of visual datasets. The results come out in
front in the test.

The remainder of the paper is organized as follows.
Section II shows the process of establishing a mathematical
model for tracking. Section III provides the experimental of
the paper. Conclusions are drawn in Section IV.

II. RELATED WORK

Roughly speaking, tracking algorithms can be divided
into two categories: discriminative methods and generative
methods. Discriminative methods treat visual tracking as a
classification problem of foreground and background. The
generative methods adopts online updating method to adjust
the parameters so as to meet the change of the target
appearance. IVT [13] propose view the model to adapt to
the change in the target as the goal of learning online.
Kwon et al. In [14], the improved particle filter, multiple
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observations and motion modes are combined to handle large
appearance and movement changes. For the first time, the
theory of sparse representation is applied to the target track-
ing and Mei et al. [15] propose the l1 tracker. But it needs
long time to solve l1 norm optimization problem. Zhang
et al. [16] use the low rank representation, and propose a
target tracking algorithm based on low rank sparse learning
(CLRST). In Zhang’s model [16], the target template is
composed of gray scale pixel vectors. The defection of the
target template does not contain rich image information, and
there are correlations between the target templates, which is
not conducive to sparse representation.

III. DETECTION AND TRACKING

Firstly, the target detection algorithm is used to find
the moving target, and features in the dictionary space are
updated accordingly. When the tracked target is found, the
tracking algorithm starts to work, and the dictionary and
weights are changing adaptively. After that, the detection
algorithm helps tracking the target in each frame.

III-A. Detection

The detection uses moving window for detecting objects
to see whether the target appears in each frame of the video,
and then finds the scanning window containing the target.
In each frame, the algorithm produces a large number of
moving windows as particles according to the calculated
position distribution (see Sec. III-B). We select the range of
windows based on the tracking results of the previous frame
considering the target velocity and see if window contain the
target. After that, we implement simple classifiers to filter the
windows aiming at improving the detection efficiency. Two
classifiers are adopted in the algorithm, variance classifier
and colour classifier. Variance classifier uses a threshold of
pixel’s variance in the sliding window to determine whether
the window contains the target. The following equation
computes the variance

D(p) = E(p)2 − E(p2), (1)

where p ∈ Rm1×m2 denotes the pixel intensities in the
considering window of size m1 by m2, D(p) represents the
variance of pixel intensities in the window, E(p)2 represents
the square of the expected value of pixel intensities in a
window, and E(p2) represents the expectation of the square
value of pixel intensities in the window. The colour classifier
can be calculated in the similar approach where we need
to consider 3 channels (RGB or HSV). A moving window
meets the requirements of both classifiers can be kept as
qualified candidates for future computations.

III-B. Particle Filter

In this paper, a recursive Monte Carlo particle filter is
leveraged to implement the recursive Bayesian filter. The
idea is, the posterior probability density is expressed by the
estimation of the random particle set with weights, and the
estimation of the state is obtained. The target image set Yt =

{y1, y2, ..., yt} is given at the t moment. An iterative solution
is used to estimate hidden state variables xt,

p(xt|yt) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1, (2)

where p(xt|xt−1) represents a dynamic model between two
consecutive states, p(yt|xt) represents the observation model.
It is used to estimate the probability of the observed yt in the
case of the known state xt. Given some observations at time
t, the optimal state of the tracking target can be obtained
by estimating the maximum posterior probability of the N
samples at time t:

xt = argmin p(yit|xit)p(xit|xt−1), i = 1, 2, ..., N, (3)

where xit is the ith sample particle of state xt, and yi
t is

the image block corresponding to xit. After the maximum
posterior probability is calculated in the particle filter frame-
work, the particle with the largest probability is selected
as the tracking result in a large number of particles in
time t. In addition, the result in each frame is obtained by
resampling of particles based on the result in the last frame.
This approach can avoid particles degeneracy to a certain
extent.

III-C. Atomic Norm and Adaptive Weights
Atomic norms are considered in the optimization tracking

problem in the framework of particle filter, and the regu-
larizations are set as the nonnegative combination of atoms
from a set A.

Definition 1 (Atomic Norm): [17] The atomic norm || ·
||A of A is the Minkowski function (or the gauge function)
associated with conv(A) (the convex hull of A):

||x||A = inf{t > 0|x ∈ t conv(A)}. (4)

If conv(A) is compact, centrally symmetric, and contains a
ball of radius ϵ > 0 around the origin, the gauge function
is a norm. Specifically, when A ∈ Cn is the set of unit
norm 1-sparse elements, the atomic norm || · ||A is the l1
norm [18]. When A is the set of unit norm 1-rank matrices,
the atomic norm is the nuclear norm [19]. Researchers
have showed that minimizing the atomic norm subject to
constraints provided exact solutions of a variety of linear
inverse problems with nearly optimal bounds on the number
of measurements required [17], [20].

In the tracking process, we define X = [x1, x2..., xn] and
xn is a vector of pixels in a window. D = [d1,d2...,dn] is
composed of tracking results that gets from every previous
frame. We define X = DZ, Z has a structure that can be
represented by combinations of multiple atomic norms. In
Zhang’s paper [16], Z has been shown to have low rank
and sparse properties in most cases. While in our case, the
concept has been extended to all structures whose atomic
norms are low, and Zhang’s work can be seen as a special
case of ours. In the process of target tracking, the observation
model plays a major role, and its purpose is to calculate the
likelihood probability of the observed variable. A prediction
state xt corresponds to an observation target image, then the
n prediction states correspond to n candidate target image
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blocks Y = {y1, y2, ..., yn}. Then we aim at solving the low
rank sparse representation problem by

min
Z,E

λ1∥Z∥A1
+ λ2∥Z∥A2

+ · · ·+ λk∥Z∥Ak

+ κ1∥Z − Z0∥2 + κ2∥E∥1 s.t. Y = DZ + E
(5)

where Z combines multiple atomic norms such as low rank
and sparse properties, Z0 is composed of the low atomic
norm representations of the result from the previous frame,
and E represents the error caused by the noise in many
different occlusions. ||·||A1

, · · · , ∥·∥Ak
represent k different

atomic norms, k denotes the number of atomic norms in
consideration, λ1 ∼ λk, κ1,2, are weights of each term.
These atomic norms can be the nuclear norm which is
the sum of the singular values of the matrix, or l1 norm
which is the sum of absolute values, or other atomic norms,
such as moments under Fourier bases, Wavelets bases, etc
[17]. Before the tracking process, people can choose the
types and numbers of atomic norms in Eq. (5) according
to the structure of the tracking target. Normally 2 or 3
regularizations can be adopted in the Eq. (5), and atomic
norms including l1, nuclear norm, Fourier and wavelets are
highly recommended if no prior information of the tracking
target is provided. Because most images can be decomposed
to such dictionaries naturally and efficiently.

Algorithm 1 Atomic Norm Tracking With Detection Algo-
rithm.
Input: Dictionary template Dt−1

Particles of n
Tracking result yt−1 at previous frame

Output: Tracking result yt
Updated dictionary Dt

1: Detect the target using the classifier (1) according to the
result yt−1 of previous frame

2: The result of the detection is used as dt in the dictionary
D

3: Compute atomic norm representation of Z for y by (5)
4: The Z with the highest similarity score is used as the

tracking result
5: Update λ1 ∼ λk, κ1,2 toward the gradient direction
6: The result of the tracking is used as input to next frame

Inexact augmented lagrange multiplier (IALM) is used
for low rank minimization of matrices. Its main idea is
to join Lagrange in the objective function to be an aug-
mented Lagrange function. In the iterative process it adjusts
the penalty factor and the Lagrange multipliers, so as to
meet the convergence condition and approach the optimal
approximate solution. In order to solve Eq. (5), in the case of
sparsity, we use Sλ(Z) that is the soft-thresholding operator,

Sλ(Zij) = sign(Zij)max(0, |Zij | − λ). (6)

In the case of low rank we use Jλ(Z) = USλ(Σ)VT ,
that is the singular value soft-thresholding operator. When
the atomic norm applies other norms, we use the greedy

forward-backward operator to calculate it [21]. After obtain-
ing the Z with the highest similarity score as the tracking
result, we use an extra step to update the weights in Eq. (5).
The rule of the updating is to increase the weights that can
represent the target features better, and decrease the weights
that fluctuate in the previous frames. We create a memory
to restore the values and weights of each term in previous
certain number of frames. We assume that the essential
information of the dictionary D cannot change dramatically
during the tracking process as long as it is not obscured.
Based on this idea the weights can be updated adaptively,
and the update speeds are chosen as less than the amount
proportional to the gradient of the atomic norms.

The complete approach can be summarized in the Al-
gorithm 1. Firstly, we can detect the moving target using
variance classifier and colour classifier. Those classifiers are
built from the result’s pixels of the previous frame. The result
of the detection is treated as a column of the dictionary D.
Secondly, we compute the atomic norm representation of Z.
The Z with the highest similarity score is used as the tracking
result. This is the tracking stage. In the end, we update the
parameters and get the results as input for the next frame.

IV. EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed model,

this section uses 10 trackers on 7 widely used sequences.
Aiming at carrying out a fair comparison, we compare
our algorithm to methods whose source code is available
publicly. Meanwhile we try to ensure that each tracking
algorithm has the similar sets of specific parameters. In
recent years, benchmark datasets are used for many visual
tracking. In this paper we use the same ground truth for
each tracking algorithm in the datasets. For vision tracking
algorithm, two evaluation methods are applied in order to
evaluate the performances of the algorithms objectively and
accurately. One method is the average precision (AP), the
other method is the success rate (SR). The precision rate
refers to the Euclidean distance between the center position
(x, y) of the tracking results in each frame and the true
center position (xtrue, ytrue). The average precision can be
calculated as:

AP =
1

T

T∑
t=1

√
(xt − xtrue

t )
2
+ (yt − ytruet )

2
, (7)

where (x, y) indicates the predicted center position of the
result at time t, (xtrue, ytrue) indicates the ground truth
position at time t. T represents the total number of video
frames. The success rate refers to the ratio of the overlapping
areas that are the tracking result’s window and the ground
truth window,

SR =
1

T

T∑
t=1

wt ∩ wtrue
t

wt ∪ wtrue
t

, (8)

where wt represents the area of the window at time t, wtrue
t

indicates the area of the ground truth window at time t.
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Table I. PRECISION OF TRACKING ALGORITHM
Video David David2 Sylv Fish Shaking Singer1 Singer2
CT [22] 0.73 0.01 0.91 0.72 0.70 0.56 0.92
IVT [13] 0.85 0.97 0.92 0.92 0.04 0.77 0.13
DFT [23] 0.37 0.72 0.90 0.82 0.74 0.62 0.59
ASLA [24] 0.37 0.80 0.91 0.67 0.19 0.62 0.85
L1APG [25] 0.72 0.96 0.91 0.41 0.09 0.35 0.04
ORIA [26] 0.55 0.86 0.92 0.56 0.52 0.84 0.09
MTT [27] 0.33 0.96 0.91 0.16 0.05 0.47 0.04
CSK [28] 0.64 0.94 0.92 0.18 0.65 0.72 0.04
TLD [8] 0.59 0.93 0.93 0.62 0.08 0.78 0.16
LRT [16] 0.78 0.95 0.91 0.80 0.85 0.71 0.55
Proposed Method 0.90 0.92 0.94 0.93 0.51 0.83 0.60

Fig. 1. Various algorithms are compared in a frame of video.
The box represents the result location of the algorithms. The
video is Singer1.

Fig. 2. Various algorithms are compared in a frame of video.
The box represents the result location of the algorithms. The
video is David.

Table I shows the average precision of 11 tracking algo-
rithms on the 7 videos. Compared with other methods, our
proposed method has the best results on David, Sylv, Fish
videos.

Figure 1 shows the results for the Singer1 video. This
video contains scale, various illumination and changes in
different perspectives. Figure 2 shows the results for the
David video. The difficulty is the changes on the background.
Our method has a good performance on all frames.

Figure 3(a) shows the precision curve and figure 3(b)
shows the success rate curve of various algorithms on the
7 videos. The method of evaluating each algorithm is to
initialize the same location and run the algorithm in each
test video. Finally, we record all the results data, including
precision or success rate. The proposed algorithm is the best
or second best results in the figures. The precision curve
is better, and the accuracy of the algorithm is higher than
most of other algorithms. Similarly, the success rate curve
is greater than other methods.

V. CONCLUSIONS
In this paper, we focus on the object detection and tracking

in computer vision. Based on the particle filter framework
and adaptive structure-enhanced regularizations, we propose
a novel robust visual tracker, which jointly updates the target
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Fig. 3. The results of various algorithms are calculated
on datasets. (a) Precision rates of different algorithms. (b)
Success rates of different algorithms.

dictionary and parameters to obtain tracking results with
better accuracy. Multiple atomic norms are used in the cost
function in the dictionary space. The proposed approach uses
the appropriate classifier to ensure the real-time tracking in
practice. We evaluate the proposed approach with tracking
datasets, and demonstrate the superiority of the proposed
approach against other 10 state-of-the-art visual trackers.
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