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ABSTRACT 

 
Performance-cost trade-offs in video object tracking tasks for long 
video sequences is investigated. A novel frame-subsampled, 
drift-resilient (FSDR) video object tracking algorithm is presented 
that would achieve desired tracking accuracy while dramatically 
reducing computing time by processing only sub-sampled video 
frames. A new pattern matching score metric is proposed to 
estimate the probability of drifting. A drift-recovery procedure is 
developed to enable the algorithm to recover from a drift situation 
and resume accurate tracking. Compared against state-of-the-art 
video object tracking algorithms, dramatic performance (accuracy) 
enhancement and cost (computing time) reduction are observed. 
 

Index Terms – video object tracking, computing time, 
sub-sampling, drift-detection, drift-recovery 

 

1. INTRODUCTION 
 
Video object tracking (VOT) has received much attention due to a 
wide variety of applications including surveillance, non-invasive 
monitoring, visual data analytics [12]. Numerous algorithms have 
been proposed [1-6] and several large-scale benchmarks [7] and 
competitions [8-10] have also been proposed.  
 State-of-art video object tracking algorithms suffer from the 
drifting problem when the object being tracked gradually slips 
outside the tracking window as the tracking process continues. 
Existing robust video trackers [3, 4, 6] aim at reducing the 
probability of drifting. However, these trackers cannot detect onset 
of a drifting event, and would rely on manual correction to resume 
tracking.  
 Another important issue that has received little attention so far 
is the computation cost required for high performance video object 
tracking over very long video sequences. With the ever-increasing 
number of perpetual, surveillance and monitoring cameras installed 
on infrastructures, homes, and even human bodies, the amount of 
video data generated far exceeds all other type of data modalities 
combined [13]. Being a commonly used, first level video analytic 
tool, the task of video object tracking would consume tremendous 
computation power and computing time that is proportional to the 
number of frames in the video to be processed. For example, US 
Federal Highway Administration (FHA) has commissioned the 
Second Strategic Highway Research Program (SHRP 2) 
Naturalistic Driving Study (NDS) [11] to collect over two petabyte 
of video recordings of 3,400 drivers driving vehicles. Each video 
sequence lasts several hours. It would incur enormous cost (money 
and time) to manually supervise processing of each of these long 
video clips.  

 To address these two important issues in video object tracking, 
in this work, we propose an algorithm which leverages 
content-dependent prior information and accomplishes a 
frame-subsampled, drift resilient (FSDR) video object tracking 
algorithm.  
 A distinct feature of the FSDR algorithm is that it does not 
process a video sequence frame after frame continuously. Rather, it 
can perform video tracking on a video sequence sub-sampled at a 
rate of 1 per M (M> 1) consecutive frames. Since the number of 
frames that need to be processed is reduced by a factor of M, 
potentially, the overall processing speed may increase M times.  
 Another distinct feature of the FSDR algorithm is that we 
propose to use a Bayesian matching score to determine the 
likelihood of drifting. When the score falls below a threshold, it 
indicates drifting is likely occurring. Then, a drift-recovery 
procedure will be invoked to put the tracking “back-on-track”. This 
procedure includes using known reliable templates or if applicable, 
generic object detection with the help of prior probability 
distribution of the object positions.  
 The paper is arranged as following: in section 2, related works 
are reviewed, and motivation is proposed. In section 3, prior 
information, subsampling and drifting issues are analyzed. In 
section 4, the FSDR algorithm is compared against state-of-art 
video object tracking algorithms. Discussion and conclusion are 
presented in section 5. 
 

2. RELATED WORK 
 
Recently, many video object tracking methods use an adaptive 
tracking-by-detection approach that formulate the task of visual 
object tracking a pattern classification problem. They also use 
online learning to update the object model [4]. Many of them made 
great and elaborate effort on model updating to avoid drifting. For 
example, the algorithm TLD [2] explicitly decomposes the 
long-term tracking task into three sub-tasks: tracking, learning, and 
detection. The detector corrects the tracker if necessary. And the 
learner estimates the detector’s errors and learns from them to 
update the detector. Babenko et al [3] proposed to use multiple 
instance of the object template to reduce the template update error. 
In [6], a semi-supervised online boosting method is proposed to 
find a good model for updating. Self-paced learning [14] uses a 
self-paced curriculum-learning formalism to automatically select 
“right” frames for the classifier to learn the templates, so as to 
ensure the updated model covers the right appearance. Long-term 
correlation tracking [15] trains an online random fern classifier to 
re-detect object in case of tracking failure. STRUCK [4] uses 
kernelized structured output support vector machines to select and 
learn from targets online. 
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Figure 1 FSDR framework 

 
Figure 2 FFT of x and y coordinate of head location 

 These methods while trying to reduce the probability of drifting, 
do not explicitly detect the onset of drifting, nor provide any 
remedy while drift occurs. Thus, it is observed [7] that drifting is 
still an unavoidable problem in VOT. The drifting problem 
presents specific challenge when VOT is to be performed on very 
long video clips containing hundreds of thousands of frames. If 
drifting occurs early without being detected in time, remaining 
outcome would be erroneous, causing significant waste of time and 
money.  
 For processing large amount of video data, processing speed 
and execution time is also a key consideration. MOSSE [17] uses a 
new type of correlation filter, minimum output sum of squared 
error filter, and claims a high processing speed of hundreds of 
frames per second with robust performance. KCF [16] proposes an 
analytic model and diagonalizes the circulant matrix with Fourier 
transform to reduce both storage and computation. However, these 
correlation filter based trackers are more focused on mathematical 
model of filters to reduce computation load. Every frame in the 
video sequence is still processed despite significant temporal 
redundancy (correlation) among successive frames.  
 

3. FRAME-SUBSAMPLED, DRIFT RESILIENT VIDEO 
OBJECT TRACKING 

 
In the proposed FSDR VOT algorithm, an important assumption is 
that a set of training videos that exhibit similar characteristics of 
long, testing videos are available so that prior information may be 
exploited to facilitate faster, robust VOT. During the development, 
we will use the SHRP-II NDS driver state monitoring video as an 
example. These video clips are hour-long video clips taken from 
under the rear mirror in front of the driver. They record driver’s 
head image during driving. The goal is to track the driver’s head 
movement so that driver's state (distraction, sleeping, eating, phone 
call, etc.) may be detected. The major challenge is to achieve 
desired tracking performance while minimize the processing time.  

 
Figure 3 Error rate with respective to different subsampling factor 

 
Figure 4 Head location distribution model with 3 (𝜎! ,𝜎!) ellipse 

and mean value plotted 

 To achieve this goal, our proposed VOT tracking algorithm can 
be summarized in Fig. 1. It leverages strong prior information to 
facilitate three important improvements over existing VOT 
algorithms: frame sub-sampling, search region estimation and 
likelihood based drift detection.  
 
3.1. Frame-subsampled rapid tracking 
 
A key objective of VOT is to estimate the (x, y) position of the 
moving object as a function of time. If these time functions have 
band-widths (Nyquist rate) that are much smaller than (half of) the 
video frame rate, they may be reconstructed with sub-sampled 
sequence without incurring excessive tracking error. In Fig. 2, the 
spectra of manually annotated driver’s head positions (x(t) and y(t)) 
in the SHRP-II video HDEM25, which has a frame rate of 15 
frames/second, are plotted. Clearly, most of energy concentrated 
within a band < 1 Hz. This implies that one may process a 
sub-sampled video sequence, say 1 in every N frames and then can 
reconstruct the entire track using interpolation.  
 An immediate benefit of frame-subsampling is saving of 
processing time by a factor of N. The concern of course, is whether 
this may lead to excessive tracking error. Assuming the tracking on 
the sub-sampled video sequence is done perfectly, the performance 
degradation due to interpolation is analyzed empirically. An 
interpolated tracking position is deemed as an error if it deviates 
from the annotated position by more than 20 pixels. In Fig. 3, the 
percentage error rate (# of error frames/# of interpolated frames) is 
plotted versus N, the sub-sampling ratio for N = 1 (no subsampling) 
to 30. Clearly the increase in tracking error due to interpolation is 
quite insignificant.  
 
3.2. Prior distribution and head motion distribution 
 
In many VOT applications, the trajectory of the object’s movement 
may be confined into a specific region due to physical constraints  
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Figure 5 4-step head location displacement distribution 

 
Figure 6 Probability score of each step of Bayesian estimation 

or other prior knowledge. Such information can be exploited to 
enhance tracking performance. For example, in Fig. 4, the driver’s 
annotated head positions in SHRP-II video HDEM25 are plotted 
and approximated by a normal distribution whose mean and ellipse 
corresponding to 3σx, and 3σy are plotted. This prior distribution of 
head position will be very useful to help detecting whether drifting 
occurs during tracking. It also helps to resume tracking from a 
more reliable position once drifting is detected.  
 Next, we exploit the physical constraint the displacement of 
driver’s head between neighboring frames must be limited. The 
empirical distribution of this displacement thus provides a good 
estimation of the N-step state transition probability p(xk|xk−N+1) 
where N is the frame sub-sampling factor. One example for N = 4 
is depicted in Fig. 5. Again, this distribution is approximated by a 
bivariate normal distribution. The mean value of this distribution is 
at (0, 0), meaning the head’s position remains unchanged.  
         
3.3. Drift resilience 
 
Drifting is the phenomenon that the estimated tracked location 
deviates from the ground truth and never returns. It is the most 
serious challenge of all video tracking algorithms and is often the 
results of a multitude of causes, including rotation, motion blur, 
background clutter, and occlusion. Previous approach for dealing 
with the drift problem is to develop so-called robust tracking 
algorithms that are less sensitive to these negative impacts.  
 In this work, we take a different approach: We develop a drift 
detection and associated drift recovery scheme to decide whether 
the current tracking estimate is the onset of a long run of drift. If so, 
drift recovery procedure will be invoked to discard the drifted 
position estimate and deduce a more reliable estimate using prior 
knowledge. 
 
3.3.1. Drift Detection 
Drift detection is formulated as a pattern classification problem 
using features derived from the tracking algorithm. Given the kth 
frame image zk, a matching score S which is the posterior 
probability p(xk|z1:k) ∝ p(zk|xk)⋅p(xk|xk−N+1) will be evaluated over 
every pixel in the search range. In this work, we use 
cross-correlation of the latest template of the object and candidate 
template within the search region to estimate the likelihood p(zk| 
xk). However, other matching criterion that provides an estimate of 
p(zk|xk) will be applicable as well. Fig 6 shows the posterior  

 
Figure 7 ROC curve for post matching score with the chosen 

threshold marked 

matching score is proportional of the multiplication of the prior 
probability and the cross-correlation template matching score of 
the search region. 
 The position that maximizes p(xk|z1:k) then will be designated as 
the Bayesian estimate of xk. Then S(xk) will be used to determine if 
this estimate is likely the onset of a run of drift. We define drift as 
the situation when the estimated xk deviates from the ground truth 
by more than 20 pixels. Then, we plot a receiver-operating curve 
(ROC) to determine a threshold h such that we determine drift is 
detected if S(xk) ≤ h. The ROC curve is plotted in Fig. 7. The 
threshold, which is closest to upper-left corner of the ROC, is 
chosen as the best threshold. 
 
3.3.2. Drift Recovery 
When a drift situation is detected, it implies the current template no 
longer contains the object being tracked. Several different drift 
recovery remedies may be applied: (a) Use known reliable 
templates which may include the template used to initialize the 
tracking, and templates that exhibit high matching scores S(x) 
around xk−N+1 from previous frames. Matching scores will be 
evaluated for these candidates over the search area. (b) Use general 
object detection (such as a Viola-Jones (VJ) face detector [18]) to 
detect the presence and location of the object (face). Also 
incorporate the N-step state transition probability to focus on likely 
position of the object. In the experiments performed in this paper, 
drift recovery strategy (b) is used.  
 
3.4. FSDR tracking scheme 
 
A block diagram of the proposed FSDR tracking algorithm is 
shown in Fig. 8. It is initialized with a template detected using VJ 
face detector and the prior probability distribution of head 
positions p(x). Then a cross-correlation based tracking is applied to 
a sub-sampled video sequence with a sub-sampling factor N. The 
matching scores are closely monitored to detect onset of a drift. 
When a drift condition is detected, use the VJ face detector and p(x) 
to re-initiate the head-tracking.  
 When the FSDR tracking algorithm is to be applied to other 
types of VOT videos, the VJ head detector may not be applicable. 
Then the algorithm may be initialized with a manual specification 
of the object in the first frame. Then use this manually specified 
template to facilitate tracking. For drift recovery, a best-known 
template approach will be used.  
 

4. EXPERIMENTAL RESULTS 
 

Within the SHRP-II video, we used HDEM25 for training the 
FSDR algorithm including extracting prior probability, and N-step 
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Figure 8 FSDR workflow

 
Figure 9 Performance-cost of FSDR and STRUCK 

 
Figure 10 Center distance error comparison 

state transition probability. We also use the training video 
sequences to derive the threshold for drift detection. We use a 
60-minute (54000 frames @ 15frames/second) video, HDEM24, as 
the testing set. Drivers’ head positions in all training data sets and 
the testing data sets are manually annotated. We define a tracking 
error as a deviation of more than 20 pixels between the tracked 
position and the ground truth position.  
 For comparison purpose, we also download the source code of a 
video tracker STRUCK [4], the champion of 2013 VOT challenge 
[8], and apply it to the HDEM24 video. The performance criterion 
is the percentage of frames in the testing video that are accurately 
tracked. The cost function is the total CPU time for execution of 
the tracking algorithm.  

 To investigate the effect of sub-sampling at different 
sub-sampling factor N, we tried N = 1 (no sub-sample) to 30. The 
result for FSDR tracker is summarized in Fig. 9. Two observations 
can be made: First, the computing time increases as N reduces. 
This is sort of expected. Secondly, the performance varies abruptly 
between adjacent values of sub-sampling factor N. But the 
performance gradually decreases as N increases.  
 For comparison, we overlay the performance-cost curve of 
STRUCK on the same curve of FSDR. It can be seen the curve for 
STRUCK varies much more wildly compared to that of FSDR. 
Overall, FSDR has much higher performance and much lower 
computing time compared to STRUCK.  
 A closer look at the experiment results reveals that these abrupt 
performance variation as shown in Fig. 10 is primarily due to drift 
occurring at different places of a video. If it occurs too early, the 
overall performance will be severely degraded.  

 

5. CONCLUSION 
 
In this paper we propose a frame-subsampled, drift-resilient tracker, 
which prevents drifting and achieves high tracking accuracy while 
dramatically reduces computing time on long video. The 
comparison with state-of-art trackers shows that this algorithm is 
efficient on large-scale long video data set. The adoption of prior 
information supports the sampled-tracking and drift-resilient 
scheme, which could greatly save time and ensure high accuracy. 
In future study, a drift-detection considering more classification 
criteria will be carried. Also, a drift-recovery step with more 
reliable and confident detectors will be studied. Besides, this 
frame-subsampled, drift-resilient scheme will be applied on more 
different types of trackers to explore the feasibility of this scheme. 
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