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ABSTRACT

This paper proposes a novel patch-based variational segmen-
tation method that considers adaptive patches to characterize,
in an affine invariant way, the local structure of each homo-
geneous texture region of the image and thus being capable
of grouping the same kind of texture regardless of differences
in the point of view or suffered perspective distortion. The
patches are computed using an affine covariant structure ten-
sor defined at every pixel of the image domain, so that they
can automatically adapt its shape and size. They are used in
a segmentation model that uses an L1-norm fidelity term and
fuzzy membership functions, which is solved by an alternat-
ing scheme. The output of the method is a partition of the
image in regions with homogeneous texture together with a
patch representative of the texture of each region.

Index Terms— Image segmentation, variational meth-
ods, L1-fidelity, patch-based methods, affine invariant patch
similarity.

1. INTRODUCTION

Image simplification (or segmentation) is one of the central
problems in image analysis and computer vision. The goal
is to partition the image into regions which share common
features – such as color, intensity, texture, or depth – while at
the same time locate the most regular and accurate contours
that define the sharp boundaries of these regions. Often, a
representative feature of every region is also extracted; this
information can be used, for example, for image cartooning,
or image interpretation.

In the literature on image segmentation, variational ap-
proaches are among the most popular [26, 23, 28, 10, 24, 8].
From these references, it is now well known that a good seg-
mentation can be obtained by minimizing an appropriate en-
ergy functional. The Mumford-Shah functional is one of the
most popular with this underlying variational criterion (see,
e.g., [18] and references therein). Let us briefly recall that
Mumford and Shah [19] proposed a joint smoothing and edge
detection energy formulation for the segmentation problem.
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By minimizing that energy, one tries to approximate the in-
put image u, defined on an image domain Ω, by a piecewise
smooth function v, similar to u in each segment of Ω\B and,
at the same time, to reduce the complexity of its discontinuity
set B. The L2 norm of the error v − u is used to measure
the similarity between v and u. Due to the theoretical and nu-
merical complexity of the Mumford-Shah functional, a sim-
plification of the previous problem has been used where v is
considered piecewise constant in Ω \B.

As the gray level or color value of a single pixel is neither
discriminative nor robust enough to be used for computing
the similarity between u and v, specially for natural textured
images, the use of patches is a common practice for establish-
ing image similarities and correspondences in different image
processing and computer vision applications (such as e.g. de-
noising or stereo matching among many others [20, 1, 13]).
Traditionally, these patches have been defined as squared or
circular windows. One of the main problems with these win-
dows is that if the center of the patch is close to an object
boundary the patch contains mixed information from differ-
ent objects. Simple improvements are bilateral weights [25]
or adaptive patches that try to follow the local geometry of
the image [6, 9, 30]. However, patches of fixed size have
two main problems: (1) poor discrimination power when ap-
plied to textural structures not observable within the size of
the neighborhood because of the wrong scale selected, and
(2) lack of robustness to transformations of the local texture
due to perspective transformations or changes in the point of
view. In contrast, the patches proposed in [7] – following the
idea that there is a relation between dominant orientation and
an appropriate scale and adaptive neighborhoods [16, 2] – are
ellipses on the image domain that automatically adapt their
size and orientation to the local structure of the image. These
kind of patches, in combination with the affine invariant simi-
larity measure introduced in [7] allow to identify similar local
image patterns that have suffered different affine transforma-
tions.

The focus of this work is to use the L1 version of this
patch-based affine invariant similarity measure in a Mumford-
Shah-based segmentation functional to partition the image
into regions that share the same local structure up to an affine
distortion. Thanks to the use of the L1 norm in our fidelity
term, the proposed model also provides the representative
sharp texture for each region, which consists of a patch con-
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taining contrast preserving texture as a result of a weighted
median vector process. As a further consequence of the use
of the L1 norm it is robust to impulse noise and outliers. The
L1 norm was also used for segmentation purposes in [15, 12].
As in our proposal, [15] also uses fuzzy membership func-
tions [29] and the TV norm to estimate the length of the
segmentation boundaries. On the other hand, the classical
structure tensor has been used in the literature for texture seg-
mentation purposes [21, 22, 11]. but these methods are not
robust to affine transformations in the texture. In this paper,
we propose an L1-norm variational model that uses fuzzy
membership functions and outputs a partition of the input im-
age in regions with homogeneous texture regardless of affine
distortions together with a representative patch containing the
normalized texture of each region.

The outline of this paper is as follows. Sect. 2 details
our variational proposal. In Sect. 3, the optimization method
is presented while the experimental results are presented in
Sect. 4. Finally, the paper is concluded in Sect. 5.

2. THE MODEL

Let u : Ω → RM be a given image defined on Ω ⊂ R2

with values in RM , where M = 1 for gray level images and
M = 3 for standard color images. Our aim is to characterize
the regions of the image domain Ω having homogeneous tex-
ture regardless of differences in the point of view or suffered
perspective distortion.

To this goal, we consider a spatially varying Riemannian
metric defined on the image domain Ω that captures these
distortions. In particular, let Tu(x) be the metric given, in
matricial form, by the affine covariant tensor associated to u
proposed in [7]. It guarantees affine covariant regions by as-
sociating an appropriate adaptive patch to each point x ∈ Ω
which is defined as follows. Let pu : Ω → Lq(∆t) denote
the function given by pu(x) := pu(x, ·), where pu(x, h) :=

u(x + Tu(x)−
1
2h), and h ∈ ∆t, a disc centered at the ori-

gin with radius proportional to t. Figure 1 displays an image
and some of its patches defined by the affine covariant tensors
Tu(x), for some pixels x.

To compare two patches pu(x),pu(y) in an appropriate
manner, we propose to use the multiscale affine invariant
patch-similarity measure of [7], that automatically transforms
the patches in comparison:

Da,q
t (pu(x),pu(y)) = (1)∫
∆t

gt(h)
∥∥∥u(x+ Tu(x)−

1
2h)− u(y + Tu(y)−

1
2h)
∥∥∥q
Lq

dh,

where q > 0, ‖ · ‖Lq denotes the norm in Lq , t > 0 represents
the scale of the patch and allows to control the support in the
patch comparison, gt is a geodesic weighting function having
effective support in ∆t. In the following, we will consider
q = 1.

Fig. 1: Left, in red, the adaptive patch associated to the affine
invariant structure tensor for some pixels of the image. Right,
some of the patches transformed into discs.

In order to define our segmentation model, let Pu be the
set of all patches obtained from image u and defined using the
affine covariant tensor metric Tu(x) associated to u. That is,

Pu = {pu(x), x ∈ Ω} . (2)

Let us notice that, thanks to the tensors, these elliptical
patches can be considered defined on the normalized disc
∆t. Figure 1 illustrates, on the right, four normalized discs
corresponding to four patches of the image.

We propose to simplify the set of all patches Pu by
estimating an optimal finite set of representative patches
{pΩ1

, . . . ,pΩN
} , where Ω = ∪Ni=1Ω̄i is a partition of the

image domain into N disjoint open regions Ωi, for N ∈ N,
such that each region contains the pixels with similar patches
and pΩi is the patch associated to the region Ωi. In other
words, Ωi contains all the pixels with local homogeneous tex-
ture regardless of differences in the point of view or suffered
perspective distortion. We propose to do it by minimizing the
following energy:

E(p, B) = `(B) + λ

∫
Ω

Da,1
t (p(x),pu(x)) dx, (3)

where p =
∑

i pΩi
χΩi

is a piecewise constant patch func-
tion, i. e., it associates a homogeneous texture to each point x
of a connected component Ωi of Ω\B, andB = ∪Ni=1∂Ωi, be-
ing ∂Ωi and χΩi

the boundary and the characteristic function
of Ωi, respectively. By analogy and by an abuse of notation
we have denoted by Da,1

t (p(x),pu(x)) the patch similarity∫
∆t
gt(h)

∥∥∥pΩi
(h)− u(x+ Tu(x)−

1
2h)
∥∥∥
L1

dh, for x ∈ Ωi.
Observe that our choice of q = 1 allows to obtain pure repre-
sentative patches for each region.

As Ω \ B = ∪Ni=1Ωi, with Ωi ∩ Ωj = ∅ for all i 6= j, we
can rewrite (3) taking advantage of the fact that the functions
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χΩi are in BV (Ω; {0, 1})1 as follows

E(p, χ) =

N∑
i=1

[∫
Ω

|∇χΩi(x)| dx + (4)

λ

∫
Ω

∫
∆t

gt(h)
∥∥∥pΩi

(h)− u(x+ T
− 1

2
u (x)h)

∥∥∥
L1
χΩi

(x)dhdx

]
,

where χ = (χΩ1
, . . . , χΩN

) such that
∑

i χi(x) = 1,∀x ∈
Ω. Again, p =

∑
i pΩi

χΩi
is piecewise constant, i.e., a

unique patch pΩi
associated to each region Ωi. Note that the

Total Variation (TV) of χΩi in the first term is equal to the
length of the boundary ∂Ωi. Energy (4) measures both the
smoothness of the segmentation boundaries and the fidelity of
the aproximating piecewise patch function p to the manifold
of patches Pu of the input image u. The output ot the method
is a partition of the image in regions with homogeneous tex-
ture together with a patch representative of the texture of each
region (see Figure 2).

The variational model (4) is defined using character-
istic functions χΩi

∈ BV (Ω; {0, 1}), and the constraint∑
i χi(x) = 1 for each pixel x ∈ Ω implies that each pixel

only belongs to a unique region Ωi. But the setBV (Ω; {0, 1})
is not convex and, moreover, the Euler-Lagrange equations
for non-continuous non differentiable functions lead to dif-
ficulties in numerical implementations. Thus, following the
idea proposed in [15] we relax the characteristic functions to
be fuzzy membership functions [29] belonging to the set

C =

{
(ω1, . . . , ωN ) |ωi ∈ BV (Ω; [0, 1]), 0 ≤ ωi(x) ≤ 1,

N∑
i=1

ωi(x) = 1,∀x ∈ Ω

}
. (5)

Now, ωi(x) describes the fuzzy membership of a pixel x that
may well belong simultaneously to more than one region; in
other words, ωi(x) can be understood as the probability that x
belongs to the region Ωi. Let ω be ω = (ω1, . . . , ωN ) which
is often denoted as an N -phase fuzzy membership function.
In this framework, our model (4) writes

min
(p,ω)∈L1(Ω;L1(∆t))×C

Ē(p, ω) =

N∑
i=1

∫
Ω

|∇ωi(x)|dx︸ ︷︷ ︸
Es(ω)

+ λ

N∑
i=1

∫
Ω

Da,1
t (p(x),pu(x))ωi(x)dx︸ ︷︷ ︸

Ed(p,ω)

.

(6)

The energy formulation (6) is convex with respect to p and
ω separately but not jointly. The proof of the existence of
minimizers for Ē(p, ω) follows the lines of proof of Theorem
1 in [15], but they are not unique.

1The BV space is the space of real-valued functions whose total variation
is bounded (finite).

3. OPTIMIZATION METHOD

To minimize the functional (6), we introduce an auxiliary
variable v = (v1, . . . , vN ) ∈ C representing the fuzzy N-
phase membership function ω and we penalize its deviation
from ω by a quadratic term as follows

min Ẽ(p, ω,v) = Es(ω) + λEd(p,v)

+
1

2θ

N∑
i=1

∫
Ω

(ωi(x)− vi(x))
2

dx︸ ︷︷ ︸
Ec(ω,v)

, (7)

where θ > 0 is small enough to enforce v to be the closest
possible to ω. This energy can be minimized by alternatively
fixing two variables and minimizing with respect to the third
one since the functional Ẽ is convex w.r.t each variable, and
iterate until convergence. In the following we describe how
we minimize each of them.
3.1. ω-subproblem; dual formulation algorithm. The sub-
problem for ω is

min
ω

(Es(ω) + λEc(ω, v)) (8)

As the problem (8) is separable in the variables ωi, we can
solve each problem independently, that is:

min
ω

∫
Ω

|∇ωi(x)|dx+
1

2θ

∫
Ω

(ωi(x)− vi(x))
2

dx (9)

This minimization is done using a dual formulation and
Chambolle’s algorithm [5]:

Proposition 1. The solution of Eq. (9) is given by

ωi(x) = vi(x) + θdiv(ξ(x)) (10)

where the vector function ξ is obtained by the following iter-
ative fixed-point scheme:

ξn+1(x) =
ξn(x) + τ∇ (θdiv(ξ(x)) + vi(x))

1 + |θdiv(ξ(x)) + vi(x)|
(11)

taking ξ0 = 0 and τ ≤ 1/8.

3.2. v-subproblem. The subproblem for v = (v1, . . . , vN )
is

min
v∈C

(
λEd(p,v) +

1

2θ
Ec(ω,v)

)
(12)

Again, the problem is separable in the variables vi. As it is
differentiable with respect to vi, we can obtain a closed solu-
tion, plus a projection onto the convex set C:

vi(x) = ωi(x)− λθDa,1
t (p(x), pu(x)) , ∀i. (13)

To include the projection onto C, the set of fuzzy membership
functions, the expression (13) is replaced by

vi(x) = min{max{ωi(x)− λθDa,1
t (p(x), pu(x)) , 0}, 1}

(14)
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(a) Original (b) Mumford-Shah (c) Li et. al (d) Ours (e) Textures from the 7 regions

(f) Original (g) Mumford-Shah (h) Li et. al (i) Ours (j) Textures from the 3 regions

(k) Original (l) Mumford-Shah (m) Li et. al (n) Ours (o) Textures from the 3 regions

Fig. 2: Results on a selection of images from [17].

together with the constraint
∑N

i=1 vi(x) = 1,∀x ∈ Ω.
3.3. p-subproblem. The subproblem for p is

min
p
Ed(p,v) =

N∑
i=1

∫
Ω

Da,1
t (p(x),pu(x)) vi(x)dx. (15)

with p =
∑

i pΩi
χΩi

. For each region Ωi, the unknown patch
pΩi is given by a vector of size the number of pixels contained
in the disc ∆t. Thus, the solution for subproblem (15) is given
by a weighted median vector. For computing the weighted
median vector we use the algorithm proposed in [27, 3].
3.4. Initialization. As the functional is not jointly convex the
final result has a high dependence on the initialization. Fol-
lowing the idea of [15] we initialize the algorithm using fuzzy
c-means [4] over the set of patches of the input image. After-
wards, by applying (15), the median patch that corresponds to
each initial region will be computed.

4. EXPERIMENTAL RESULTS

In order to display the associated segmented image, we first
select, for each pixel, the maximum value of the membership
functions at that pixel. This is a translation of the assump-
tion that each pixel belongs only to the region with highest
membership value (instead of belonging to more than one re-
gion with different probability). Then, the piecewise constant
image is recovered straightforward.

To compute the affine covariant tensors and associated
patches, we use the algorithm proposed in [7] and, for all the
experiments, we select a radius of 90 and normalized discs
inscribed in a square of side 51 which results in discs with
area 2053 pixels (see [7] for details). The used convergence
criterium in the minimization algorithm is the following: we

stop the iterative scheme if the relative error between two
consecutive membership functions is less than a very small
threshold.

In Fig. 2 we present some experimental results on images
of the Berkeley Segmentation Dataset [17]. We compare our
segmentation results with the method presented by Li et. al
in [15] and the classical Mumford-Shah method, using the
algorithm proposed by Koepfler et al. [14]. For our results we
also present the output texture disc associated to each of the
regions. For noisy images, such as the ones in [15], we obtain
similar results together with an associated patch.

5. CONCLUSIONS AND FUTURE WORK

In this work we propose a new variational formulation for im-
age segmentation that uses similarity among shape and size
adaptive patches in an L1 fidelity term and the total varia-
tion of fuzzy membership functions as relaxed length of the
boundaries of the segmentation regions. The result is a par-
tition of the image in regions of local homogeneous texture
regardless of differences in the point of view or suffered local
perspective or affine distortion, together with a patch, associ-
ated to each region, which contains the representative texture
of its corresponding region.

The proposed method, built on Riemannian metrics intrin-
sic to the input image and on an L1 data term, will allow to
synthesize a textured output by using the representative ten-
sor metric of each region to fill-in the region with the texture
of the representative patch. This is an interesting direction for
future research.
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