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ABSTRACT

There is an emerging interest aiming at defining principles
for signals on general graphs, which are analogous to the ba-
sic principles in traditional signal processing. One example
is the Graph Fourier Transform which aims at decomposing a
graph signal into its components based on a set of basis func-
tions with corresponding graph frequencies. It has been ob-
served that most of the important information of a graph sig-
nal is contained inside the low frequency band, which leads
to several applications such as denoising, compression, etc.
In this paper, we show that the low frequency basis functions
span the salient regions in an image, which can also be con-
sidered as important regions. Motivated by this, we present
a novel simple and unsupervised method to utilize a number
of low-energy basis functions and show that it improves the
performance of seven state-of-the-art salient object detection
methods in five datasets under four different evaluation crite-
ria, with only minor exceptions.

Index Terms— graph fourier transform, salient object de-
tection, graph signal processing

1. INTRODUCTION

There is an increasing interest towards the extension of clas-
sical discrete signal processing principles to signals defined
over graphs, commonly referred to as graph signals. The need
for this arises from the fact that some data is naturally encoded
in an irregular mesh and can only be represented as network-
like structures such as graphs. Examples include data gen-
erated by interactions of cellular systems in biology, social
networks, power grids and transportation networks [1]. More-
over, graphs provide a more sophisticated representation, e.g.
by offering the flexibility to incorporate deeper connectivity,
which makes them suitable also for data that can be encoded
in regular grids. Therefore, a variety of tools proposed in the
recent literature introduce the classical signal processing no-
tions of filtering, transforms and sampling for graph signal
[1, 2].

In classical signal processing, Fourier transform provides
the expansion of a signal in terms of complex weighted ex-
ponentials (spectral components), collectively termed as the
Fourier basis functions. An accurate approximation of a time
domain signal can be achieved by utilizing only a portion of

the low frequency Fourier basis functions, provided that the
signal is smooth i.e. has small local variations. In order to ex-
ploit this phenomenon for signals defined on graphs, the no-
tion of ”Graph Fourier Transform” (GFT) has been introduced
[1, 3]. When dealing with graph signals, smoothness refers to
the fact that signal values associated with neighbouring nodes
are close to one another [4]. Similar to the case of the time-
domain signals, smooth graph signals can be approximated
using only a few low frequency graph Fourier basis functions.
A popular approach based on spectral graph theory is to em-
ploy the eigenvectors of graph matrices, such as Laplacian,
as the graph Fourier basis [4]. GFTs have found particularly
successful application in coding,denoising and compression
of digital images [3, 5, 6, 7].

In this paper we utilize the properties of GFT for the task
of salient object detection in images. Salient object detec-
tion aims at finding a saliency distribution map identifying
the most visually appealing and distinct regions of an image
[8]. In this paper, we claim that the saliency map, defined
as a signal on a graph representation of the image, can ac-
curately be approximated using only the lower frequency ba-
sis functions. We test this claim by projecting ground truth
saliency maps to a few low energy graph Fourier basis func-
tions and observe that the resulting representation is accurate
across a variety of evaluation metrics. Motivated by this, we
claim that a saliency map, obtained using any salient object
detection method, can be improved by mapping it to a space
spanned only by the low frequency basis functions. Our con-
tribution in this paper is thus twofold: 1) graph signals that
can be accurately spanned by low frequency graph basis func-
tions have earlier been shown to correspond to only smooth
graph signals. Similarly, we show that saliency maps are also
mainly encoded in a low-frequency band, although they are
not necessarily smooth. 2) Exploiting this finding, we present
an efficient unsupervised denoising method for any saliency
map.

The rest of the paper is organized as follows. In Section
1.1, we present a brief overview of earlier work in image
processing utilizing graph-based transforms. Section 2 elu-
cidates our proposed method to improve the results of salient
object detection methods. Section 3 presents the results of
our method evaluated using a variety of evaluation metrics.
Finally, Section 4 concludes the paper and suggests ideas for
further research.
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1.1. Related Work

We first introduce some basic concepts related to graph
Fourier transforms. Given a weighted graph, G = (V,E)
consisting of nodes V connected by edges E, the weight
matrix W is a square matrix of size N×N (N = |V |) and
wij is the weight of the edge connecting nodes i and j. In
case of an undirected graph, W is a symmetric matrix as
wij = wji. The degree matrix D, is a diagonal matrix of
size N×N where each diagonal entry, dii, is the summation
of edge weights incident on node i. A well-known matrix
describing the graph is the Laplacian matrix, defined as

L = D −W (1)

Eigen-decomposition of this matrix is commonly used for
frequency analysis of graphs [4]. The eigenvectors are con-
sidered as the graph Fourier basis functions and the associated
eigenvalues provide a notion of graph frequencies [1]. This
property of the graph Laplacian has been utilized in a vari-
ety of image processing applications. In [9], a few low en-
ergy eigenvectors of a modified Laplacian matix are lineary
superposed to generate category independent object propos-
als. In [5], the eigenvectors of the Laplacian matrix are used
for calculating transform coefficients for coding edge-maps
of image-blocks to achieve compression with a lower bitrate
as compared to traditional methods. Similarly, a multireso-
lution Graph-Based Transform (GBT) introduced in [7] em-
ploys the eigenbasis of the Laplacian for compressing depth-
maps. In [3], the generalized eigenvectors obtained using Jor-
dan decomposition of the adjacency matrix are employed as
Fourier basis, which is then utilized for image compression.
In [6], images are denoised by projecting them onto the space
spanned by the first few eigenvectors (lower frequency com-
ponents) of the Laplacian. This is based on the assumption
that the structural information about the regions in the uncor-
rupted image is encoded in the lower frequency basis func-
tions.

Similar to the findings highlighted in the works mentioned
above, we claim that in images, the salient regions can be re-
garded as the useful information. We then experimentally val-
idate our claim by showing that salient regions of an image
can accurately be spanned by low-energy graph basis func-
tions. Similar to the image denoising process in [6], we de-
noise a saliency map, by mapping it to a low energy basis
space. This results in a notable improvement in performance
across a variety of evaluation metrics.

2. PROPOSED METHOD

2.1. Graph Structure

Given an input image, we first oversegment it into multiple
homogeneous regions (superpixels) using SLIC algorithm
[10]. In the graph-based representation of the image, the

nodes represent the superpixels. The edge weight connect-
ing two nodes is inversely related to the distance in the Lab
colour space, as in [11]. Moreover, the mean value of Lab
colour for all pixels inside a superpixel is chosen as its repre-
sentative colour. The edge weights are also normalized based
on the number of neighbours the connecting nodes have. Fi-
nally, an increased neighbourhood approach is adopted where
each node is connected to up to its fifth set of neighbours.
The nth set of neighbourhood of node i refers to the nodes,
which are between, floor(2n−2 + 1) and 2n−2 spatial con-
nections away from node . This expanded neighbourhood
helps incorporate longer connectivity information and helps
in embedding global contrast information in addition to lo-
cal contrast. The final edge weight assignment between two
nodes i and j, has the following mathematical form:

wij =

(
1

ε+ dLAB(i, j)2

)
∗M(i, j) (2)

M(i, j) =
1

(|Ni,C(i,j)| ∗ |Nj |)2 + (|Nj,C(j,i)| ∗ |Ni|)2)
(3)

In (2), dLAB(., .) is the Euclidean distance in the Lab
colour space, ε is a small number to avoid division by zero
andM(i, j) is the normalization term defined as in (3). In (3),
|Ni| is the number of nodes in the neighbourhood of node i
and |Ni,C(i,j)| refers to the number of nodes in the C(i, j)th
set of neighbourhood of i. C(i, j) denotes the set containing
the neighbourhood levels between nodes i and j. We make the
asymmetric weight assignment of [11] symmetric by adding
(|Nj,C(j,i)| ∗ |Ni|)2 to the denominator of the normalization
term M(i, j).

2.2. Graph Fourier Transform

In addition to the graph Laplacian formed by the weights in
(2), [11] incorporates the boundary potential by adding a ma-
trix V to the Laplacian L. V is a diagonal matrix whose
diagonal entries have a positive value for nodes represent-
ing the boundary of the image and are zero elsewhere. This
introduces a bias in favour of treating the boundary of the
image as background and is based on the assumption that
salient objects are less likely to occupy the borders of an im-
age [12, 13, 14, 15]. In this work, we keep this value quite
small in order to handle objects touching the image bound-
aries as well. The modified Laplacian takes the form

LM = D −W + V (4)

Being a real and symmetric graph, LM has real eigenval-
ues and a complete set of corresponding orthonormal eigen-
vectors, which form an orthogonal graph Fourier basis. This
orthogonality is a desired trait, as such transforms are known
to redistribute energy of a signal in such a way that most of
the useful information is encapsulated within a small fraction
of components [16].
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Fig. 1. Performance of projected ground truth saliency maps
vs fraction of eigenvectors utilized

2.3. Methodology

We first construct the graph representation of the original im-
age and obtain the modified Laplacian matrix as described in
Sections 2.1 and 2.2. The eigenvalue decomposition of LM
yields the eigenvectors {un−1

l=0 } (basis functions) and the cor-
responding eigenvalues (frequencies). The K eigenvectors,
corresponding to the K lowest eigenvalues, are chosen as the
basis functions, assumed to be spanning the salient object.
The choice of K is critical as it defines the fraction of spec-
tral components employed. In our experiments, we restrict
ourselves to the lower 1/3rd of the spectrum and keep the ex-
act value of K as a design parameter.

The pixel-wise saliency map S of the image, obtained us-
ing any salient object detection method, is first converted to
a superpixel representation S̃ using the mapping obtained by
running SLIC on the original image and averaging the per-
pixel saliency value inside each superpixel.We now have an
N × 1 vector, S̃ , providing a superpixel representation of the
original saliency map, where N is the total number of super-
pixels. This is a signal defined on the graph and its projection
onto the space spanned by the selected basis functions, K
lowest energy eigenvectors, is given as follows:

SK
proj = u1c1 + u2c2 + u3c3 + ...+ uKcK (5)

where the coefficients c1, c2, c3, ..., cK are calculated as

cn = S̃ · un (6)

In (6), · represents the scalar product between two vectors. Fi-
nally, SK

proj is converted back to the image domain by repli-
cating the normalized saliency value of each superpixel across
all the pixels constituting that superpixel.

3. EVALUATION

3.1. Metrics

In order to evaluate the performance of the projected saliency
maps, we make use of multiple evaluation metrics as in [25].
The mean square error (MSE) measures the average pixel
wise square of the difference between the ground truth and
the saliency map. The Fβ measure is a weighted harmonic
mean of the precision and recall of the saliency map and pro-
vides an evaluation based on both of these metrics as defined
in (7)

Fβ =
(1 + β2)Precision ∗Recall
(β2 ∗ Precision) +Recall

(7)

As in [17], we set β2 to 0.3 in order to give more weight to
precision. We analyze both the maximum and mean values
for the measure in our experiments. We also calculate the
AUC measure, which is the area under the ROC (Receiver
Operating Characteristics) curve. The ROC curve is obtained
by plotting the true positive rate against the false positive rate
of detection.

3.2. Experiments

For our experiments, we evaluate on five different datsets;
SED2 [18], JUDD [8], ECSSD [14], DUTOMRON [15] and
MSRA10K [19]. Moreover, we explore five superpixel reso-
lutions corresponding to 300, 600, 1200, 1500 and 1800 su-
perpixels per image. For each resolution, we use the lower
1/3rd of the spectrum by only considering the top 1/3rd of
the total number of eigenvectors (sorted in ascending order of
eigenvalues). We start from the lowest energy basis function
and then gradually increase the coverage by utilizing com-
paratively higher energy basis functions. As a preliminary
experiment, we project the ground truth saliency map onto
the space spanned by the selected basis functions. The per-
formance of the projected ground truth saliency map is then
evaluated using the metrics defined in Section 3.1. In Figure
1, we plot the evaluation results of this experiment on DU-
TOMRON dataset for the maximum Fβ metric. As shown in
the figure, the rate of increase in performance is maximum in
the lower end of the spectrum, thus reaffirming our hypothesis
that most of the information concerning the salient object is
contained inside the lower energy basis functions. This trend
is generally consistent across all datasets and evaluation met-
rics [9].

We then proceeded to apply the same operation to saliency
maps obtained from the methods of DRFI[20], DSR[21],
RBD[22], MC[12], ST[23], MDF[24] and DCL[25]. The
experiments were conducted on each of the five datasets and
the denoised saliency maps were evaluated using the metrics
described in Section 3.1. The saliency maps for the methods
of [20],[21],[22],[12] and [23] were obtained from a publicly
available source [17]. For [24] and [25] , the original maps
were acquired from the authors’ online page [26].
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Table 1. Comparison of original vs denoised saliency maps on ECSSD dataset
DRFI MC ST RBD DSR MDF DCL+ GT

AUC 0.947 0.924 0.918 0.918 0.912 0.912 0.912
0.950300,1800 0.9371,600 0.9371,600 0.9371,600 0.9371,600 0.948600,1800 0.96950,1200 0.999600,1800

MSE 0.086 0.107 0.098 0.116 0.119 0.087 0.051
0.083100,300 0.10310,600 0.09650,600 0.10950,1800 0.10910,300 0.080100,300 0.051200,600 0.019600,1800

Fβ-MAX 0.786 0.742 0.752 0.718 0.737 0.831 0.898
0.80425,600 0.7811,1500 0.7811,1500 0.7811,1500 0.7811,1500 0.84550,1200 0.900400,1500 0.980600,1800

Fβ-MEAN 0.649 0.596 0.621 0.610 0.629 0.800 0.824
0.65350,300 0.6181,1800 0.622100,300 0.6181,1800 0.619100,300 0.741200,600 0.800600,1800 0.866600,1800

Table 2. Comparison of original vs denoised saliency maps on DUTOMRON dataset
DRFI MC ST RBD DSR MDF DCL+ GT

AUC 0.934 0.886 0.895 0.888 0.899 0.761 0.906
0.927600,1800 0.9031,600 0.9031,600 0.9031,600 0.9031,600 0.923500,1500 0.936300,1500 0.999600,1800

MSE 0.072 0.091 0.091 0.083 0.085 0.073 0.059
0.07125,1200 0.0791,600 0.0795,600 0.0775,600 0.0785,600 0.06750,300 0.057100,300 0.014200,600

Fβ-MAX 0.665 0.627 0.631 0.630 0.626 0.694 0.751
0.68110,300 0.6731,600 0.6731,600 0.6731,600 0.6731,600 0.72010,600 0.75625,600 0.959600,1800

Fβ-MEAN 0.541 0.517 0.523 0.540 0.546 0.668 0.680
0.5771,600 0.5771,600 0.5771,600 0.5771,600 0.5771,600 0.628100,300 0.669200,600 0.861600,1800

Table 1 and Table 2 document the evaluation results on
ECSSD and DUTOMRON datasets. These datasets are se-
lected because the saliency maps for all methods are available
for them. In each table, a pair of rows corresponds to a sin-
gle evaluation metric and the columns represent the methods.
The top row for each metric shows the values for the original
saliency maps while the bottom row shows the values for the
best performing projection. The subscripts refer to the frac-
tion of available spectrum utilized. For example, 600,1800
implies that 600 out of the available spectrum of 1800 basis
functions are used. The evaluation metric value is empha-
sized in cases where the denoised map outperforms the origi-
nal one. We observe that in majority of the cases, our method
enhances the original saliency map performance. For detailed
results on all datasets and methods, the reader is referred to
publicly available supplement 1.

Figure 2 shows some visual examples of the improve-
ments made on an image from DUTOMRON dataset. Fur-
thermore, the proposed method takes less than 3 seconds, in-
cluding SLIC, for an image of size 1024x768 at the highest
superpixel resolution of 1800 superpixels per image. The run-
ning time is significantly reduced for lower superpixel resolu-
tions.

4. CONCLUSION AND FUTURE WORK

In this paper, we explore a new application for graph Fourier
transform by utilizing it to improve the performance of salient
object detection methods. In our preliminary experiments, we
found that most of the information pertaining to the salient

1http://104.131.82.198/salobjdetection/gft/

object in an image is contained inside the lower frequencies
of the graph representing the image. Our experiments proved
that we can utilize the Fourier basis functions correspond-
ing to these low frequencies to improve the performance of
saliency maps. Furthermore, the percentage improvement
achieved was found to be dependent on the two design pa-
rameters; superpixel resolution and the fraction of spectrum
defined as low frequency. Our future work involves investi-
gating ways to learn or infer these parameters directly from
the properties of the image and the saliency map.

Fig. 2. Saliency Maps: (from left to right) Ground Truth,
Original obtained using method of [20] and its denoised ver-
sion using the proposed method.
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