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ABSTRACT

This paper focuses on face spoofing detection using video.
The purpose is to find out the best scheme for this task in the
end-to-end learning manner. We investigate 4 different types
of structure to fully exploit the raw data in its spatial-temporal
domain, which are the pure CNN, CNN with 3D convolu-
tion, CNN+LSTM and CNN+Conv-LSTM. Moreover, anoth-
er stream built on optical flow is also used, and with a proper
fusion method, it can improve the accuracy. In experiments,
we compare schemes on the raw data in single stream and
fusion methods with optical flow in two streams. The perfor-
mance are not only given within each dataset, but also mea-
sured across different datsets, which is crucial to avoid the
overfitting.

Index Terms— Spoofing, CNN, LSTM, Conv-LSTM

1. INTRODUCTION

Computer vision application based on facial image has al-
ready been widely used. Particularly, face recognition e-
merges in varieties of vision systems such as security control,
surveillance monitoring or human-computer interaction. On
the other hand, it is known that most of existing recognition
systems are vulnerable to spoofing attacks. The spoofing at-
tack means someone tries to bypass a face biometric system
by presenting a fake face in front of the camera. In [1], re-
searches demonstrate the vulnerability of current commercial
face authentication systems by using only the photo attack
from social network. Therefore, to distinguish a real or fake
face image has important applications.

Fake attacks are divided into three types: photo attack,
video attack and mask attack. In photo attack, the intruder
presents a real photo to the system. In such an attack, motion
or depth in the areas of attackers image tends to be consistent.
Moreover, it dose not have local facial movements. Video
attacker provides a real video playback to the system. The
face in the video is with natural expressions, but since the
playback is on the screen, there are still consistent motion
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or depth pattern. In mask attack, the intruder wears a mask
on his/her face. Some silicone mask gives a very misleading
facial appearance, only texture cues help to distinguish it.

Traditional methods deal with spoof detection by going
through two individual stages, which are feature extraction
and classifier design. Most of them choose SVM for the bina-
ry classification, but they give different features to the classi-
fier. In [2], the optical flow, which specifies the horizontal and
vertical displacement between adjacent frames, is calculated,
then magnitude of the flow vector is quantized into histogram.
In [3], a method based on texture feature is proposed. Several
feature operators are adopted to express the texture in image.
Wen et al. [4] analyze the different types of image distor-
tions caused by spoofing face, and incorporate more features
for classification. Features, reflecting the specular reflection,
blurriness, chroma moment, and color diversity, are extracted.

With the great success of the Convolution Neural Network
(CNN) on image classification task, researchers take effort to
investigate its application in face spoof detection. Many al-
gorithms based on CNN have been proposed. In [5], Li et al.
propose a deep model based on VGG-16, which is pretrained
on VGG-face dataset [6]. They finetune the model with spoof
detection dataset and extract features from different layers.
They give the features to SVM to make final classification.
Valle et al. [7] also use VGG-16 model, but they finetune
the model in an end-to-end manner without employing SVM.
Amin et al. [8] propose a two stream CNN-based structure.
One stream, trained with the local patch in face region, treat
spoof detection as regression task and produces a spoof score
for each patch. The other stream are fed with whole face re-
gion with its purpose of estimating the depth map. They make
the final fusion of two streams. All the above works [5, 7, 8]
treat the spoof detection within a single image without exploit
the temporal information. Xu et al. [9] consider both spatial
and temporal domain representation. They use CNN for fea-
ture learning in image spatial domain and Long Short-Term
Memory (LSTM) for temporal domain. But the structure of
their network has only two convolution layers which is rather
shallow.

This paper investigates the face spoof detection based on
video within the spatial temporal domain. Our goal is to find
the best way to perform the end-to-end feature learning. S-
ince CNN achieves the best performance in all image related
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classification task, the feature learning way in 2D image spa-
tial domain becomes normal. The key issue is how to exploit
the temporal domain and how to combine the temporal do-
main scheme with CNN for this particular task. Therefore,
we explore 4 different types of structures which are pure C-
NN with directly image stacking (CNN-Stacking), CNN with
3D convolution (CNN-3DConv), CNN combined with LSTM
(CNN-LSTM) and CNN combined with convolutional LSTM
(CNN-ConvLSTM). Moreover, we find spoof detection task
is easy to lead to overfitting. Thus another stream using opti-
cal flow is also built based on CNN. This second stream is first
trained individually. Then fusion scheme of the two stream is
also provided. Intensive experiments on CASIA and replay
datasets are performed to give both intra and cross datasets e-
valuation. There are also some insightful observations in this
paper. First, regularization technique such as batch normal-
ization is crucial since it is an easily overfitting task. Second,
CNN achieves better results even in the spatial temporal do-
main than other complex structure.

We organize the remainder of the paper as follows. De-
tails about our investigation on different structures are given
in Section 2. Results of experiment and their comparisons
are given in Section 3. Brief conclusions are finally given in
Section 4.

2. INVESTIGATION ON DIFFERENT STRUCTURES
IN SPATIAL-TEMPORAL DOMAIN

Different structures in spatial temporal domain are compared
in this paper. The overview flowchart is given in Fig.1. As
is shown, 3 different types of inputs, constrained in the face
region, are investigated in this paper. They are single or s-
tacked region(s) of raw images, and the optical flow in face
region calculated between the two adjacent frames. The face
detection algorithm in [10] help to locate the face region in
each image. The raw images given to CNN form the first
stream, and the optical flow also given to CNN makes the
second stream. We try and compare different structures for
the first stream and uses the simplest structure which is CNN
defined on 2 channel optical flow for the second stream. Note
that the number of channels for filters in the first convolution
layer (conv1) are different since it depends on the number of
input channels, so it separates from CNN in Fig. 1. From
conv2 to conv5 layer, the same structure is used for different
types of input. After conv5, a global average pooling lay-
er (GAP) is used to reduce the feature dimension in its spatial
coverage. To fully exploit the spatial temporal domain, we try
both 2D conv and 3D conv in CNN for stacked regions input.
With the same purpose, the output from 2D conv for the sin-
gle region is further given to LSTM or Conv-LSTM. The final
binary decision is made based on the feature given by CNN-
Stacking, CNN-3DConv, CNN-LSTM or CNN-ConvLSTM.
The best scheme among 4 candidates are chosen, and we also
investigate different fusion schemes with the second stream.
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Fig. 1. Overview of different structures to perform feature
learning for face spoof detection.

In summary, we extensively compare different ways to
conduct feature learning on the first stream with raw images
as its input. In 4 schemes, CNN-Stacking, CNN-3Dconv,
CNN-LSTM and CNN-ConvLSTM, the end-to-end training
are conducted independently without sharing model parame-
ter, but they all have the same network structure except conv1
layer. In the following subsection, we illustrate the structure
in following aspects. The comparison is between 2D and 3D
convolution for stacked regions input, and then between LST-
M or Conv-LSTM for single region input. Finally we describe
the implementation on the second optical flow stream, and the
fusion strategies for two steams.

2.1. 2D or 3D convolution

We have two ways to reformulate images so that it can be
given to conv1 of CNN. Each image can be directly given to
conv1 layer, or 15 images, at different time stamp, are stacked
and given conv1 together. Here we only focus on stacked
regions input and leave single region input to LSTM or Conv-
LSTM.

2D conv is normal in CNN, in which the filter slides over
the input tensor only in 2D spatial domain. Since there are
multiple regions captured at different time stamp in the input,
we are curious about whether 3D conv can improve it. 3D
conv, which has already been successful in the video applica-
tion [11], extends 2D conv by sliding not only in 2D spatial
domain, but also along the channel direction. Fig. 2 depicts
the differences between 2D and 3D conv. It is obvious that
3D conv has fewer parameters than 2D conv because it does
not take all channels of input tensor. But in 3D conv, 1 conv
filter generates several feature maps while 1 conv filter only
generate 1 map in 2D conv. 3D conv consumes more memory
and time than 2D conv because of another extra convolution
along the channel direction

2.2. LSTM or Conv-LSTM

As is described in previous subsection, the single face region
is first given to CNN to perform feature learning in only s-
patial domain. In order to incorporate the temporal domain
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Fig. 2. Comparison between 2D and 3D conv. The normal 2D
conv is shown on the left, and 3D conv is shown on the right.

into it, we use two types of Recurrent Neural Networks (RN-
N), which are LSTM and Conv-LSTM. Here we only give
brief descriptions about them and more details can be found
in [12, 13].

LSTM takes feature vector xt from the GAP layer in CNN
at time t. xt corresponds only to the image at time t because
CNN uses the single face region as its input in this case. The
output of LSTM is ht which will be used as a feature vector
for the final decision. The cell state is represented by vector
ct. There are also vectors specified by the input, forget and
output gate, represented by it, ft and ot. At each time stamp
t, LSTM update it, ft, ct, ot and ht in sequence. The update
is carried out as follows.

it = σ(Wxixt +Whiht−1 +Wci◦ct−1 + bi) (1a)
ft = σ(Wxfxt +Whfht−1 +Wcf◦ct−1 + bf ) (1b)

ct = ft◦ct−1 + it◦tanh(Wxcxt +Whcht−1 + bc) (1c)
ot = σ(Wxoxt +Whoht−1 +Wco◦ct + bo) (1d)

ht = ot ◦ tanh(ct) (1e)

In the above equations, σ(·) is the sigmoid function used for
input, forget and output gate. ◦ denotes the Hadamard prod-
uct. In each gate, W is the model parameter that is learned
from the data.

LSTM handles the spatial temporal data through the inner
product in input-to-state and state-to-state transitions. Conv-
LSTM is a variant which intends to change the inner product
into convolution. In Conv-LSTM, xt and ht−1 become 2D
matrixes and make their contribution through convolution in
each gate, so they only. The state update equation in Conv-
LSTM is similar with (1) except minor but crucial change
from inner product to convolution, and it can be found in [12].

2.3. Optical flow stream and fusion strategies for two
streams

Optical flow is the pattern of apparent motion which is calcu-
lated based on two adjacent images. It defines both horizontal
and vertical displacement for each pixel, and reflects motion
about object and scene. Optical flow has demonstrated its ef-
fectiveness for action recognition in video [14]. In face spoof
detection, motion is considered as a useful cue by traditional
algorithms [2], because the attacking like photo or video can
be observed by human eyes from its motion pattern.

In this paper, we propose to form another stream based
on CNN which takes advantage of optical flow as its input
feature. The algorithm in [15] is adopted to calculated the
dense optical field for each pixel between two images. Fig. 3
shows optical flow features for attack and real faces respec-
tively. The 2-channel input is given to a CNN to perform fur-

Fig. 3. Optical flow feature demonstration. The first row is
the results for attack faces and the second row is for the real
one. We show both horizontal and vertical components in the
flow. For references, one original image is also provided for
each identity. Note that the two person identities in the first
row are the same with the second row.

ther feature learning based on it, hoping to find out the useful
cues from it.

We now consider making fusion for two streams and give
the inference result on the video. In this second stream, CN-
N gives the binary inference on each optical flow calculated
from two frames. In the first stream, the candidate model
can be either CNN-Stacking, CNN-3DConv, CNN+LSTM or
CNN+Conv-LSTM. In this paper, we choose a simple fusion
scheme of 2 streams. For each stream, we take feature vec-
tor before softmax layer from each stream, and concatenate
them into a longer vector. Finally, the long vector is given to
a FC layer with two output nodes. Note that we do not change
the parameters in low-level conv layers, in other words, only
parameters in FC layer get trained in fusion step.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Implementation details

Our experiments are conducted on 3 datasets, which are
replay-attack [16], CASIA [17] and 3DMAD [18]. Replay-
attack and CASIA are given by a series of large video clip-
s. So we need some preprocessing methods for efficiency.
First the video is decoded into images by ffmpeg and down-
sampled temporally, leaving only one frame in every three,
and each video is divided into subclips with N = 15 frames
in each of them. Face detection [10] is performed on each
frame and optical flow [15] is calculated on two adjacent
frames in subclips. Note that each frame is resized to 96× 96
before given to CNN. During testing, we accumulate the bi-
nary inference results on each subclip. When 50% or above
of the subclips are considered to be attacking, then the test
video is regarded as the attacker.
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Tensorflow 1.1.0 is used as our deep learning platform for
training and testing. As is shown in Fig.1, the structure of
our network is the variant of CaffeNet [19], which is rather
simple, with only 5 conv layers. The accuracy can be easily
improved by using more complex architecture. Our hyper-
parameters are listed as follows: weight decay is 0.01, initial
learning rate is 0.001, batchsize is 50, and the learning rate is
divided by 10 for each iteration, and the optimization method
is Adam. To accelerate the convergence, we use CaffeNet
pretrained model in conv1 to conv5 layers. For CNN with
single face region, the parameters in pretrained model can be
directly applied, but for CNN-Stacking, parameters need to
extend in channel depth direction. Batch normalization is also
applied in each conv layer and fc layer in CNN. We find BN is
important in face spoof detection task to avoid overfitting. In
LSTM, BN is adopted in each gate in (1) and is independent
on input xt and historical output ht−1. Details about BN in
LSTM can be found in [20]. During training, each stream is
first trained independently, then they join together to get the
fusion results.

3.2. Quantitative evaluations and discussions

Half Total Error Rate (HTER) and Equal Error Rate (EER) are
two numerics which are often used in biometric recognition
system. HTER depends on both False Accept Rate (FAR) and
False Reject Rate (FRR), and is the arithmetic mean. EER is
also determined by FAR and FRR, and it is the value when
FAR equals to FRR. HTER and EER scores are given as %,
and we ignore % in this paper.

We compared HTER and EER of 5 separate model-
s, which are CNN-Stacking, CNN-3DConv, CNN+LSTM,
CNN+Conv-LSTM, and CNN-Optical. Moreover, the first 4
models, forming the first stream, are fused with the second
stream CNN-Optical to improve the performance.

model 3DMAD Replay-attack CASIA

Spoofnet [21] 0/- 0.70/- -
FASNet [7] 0/- 1.20/- -
Pluse [22] 7.94/4.71 - -

LSTM-CNN [9] - - 5.93/5.17
Multi-cues Integration [23] 0/- 0/- -/5.83

Diffusion-based Kernel Matrix [24] - 4.30/- -
Dynamic Texture [25] - 7.60/- -/10.00

Motion Mag [26] - 1.25/- -
Moire pattern [27] - 3.30/- 0/-
Colour Texture [3] - 2.80/0 -/2.10

Patch and Depth CNN [28] - 0.72/0.79 2.27/2.67

single

CNN-Stacking 0/0 0.64/3.84 3.72/6.74
CNN-3Dconv 0/3.30 1.80/3.84 6.51/11.23
CNN+LSTM 0/0 1.80/2.50 6.51/16.85

CNN+Conv-LSTM 1.16/3.30 5.13/5.12 14.60/22.40
CNN-Optical 1.60/0 3.60/11.26 13.84/13.48

fusion

CNN-Stacking 0/0 0.38/2.66 3.49/6.70
CNN-3Dconv 0/0 2.56/3.77 9.12/13.40
CNN+LSTM 0/0 1.68/1.28 5.22/14.60

CNN+Conv-LSTM 0.81/1.66 1.92/6.40 11.44/23.50

Table 1. Comparison of HTER/EER performance on 3
datasets.

On 3DMAD, CNN-Stacking, CNN-3DConv, and CN-

N+LSTM have all reached 0 by within only 1 stream struc-
ture. CNN+Conv-LSTM and CNN-Opitical have slightly
worse values but they can be improved after fusion. On
replay-attack, CNN-Stacking reaches 0.64 within single
stream, and 0.38 for bi-stream, which is the slightly worse
than [23]. In addition, compared with the single stream mod-
el, we find that fusion actually improves the performance on
replay-attack. Moreover, the structure of CNN used in this
paper is rather simple, and the performance will be signifi-
cantly improved if VGG or RetNet is applied. It is also worth
mentioning that the simple CNN-Stacking scheme performs
the best in both single or two streams. This demonstrates that
even for task of spoof detection in video, CNN is still easy to
train and powerful.

For practical considerations, cross dataset evaluation is al-
so necessary. Since we find face spoof detection often leads
to overfitting, it is doubtful that the above good performances
in Table 1 are actually caused by overfiting. The cross dataset
evaluation are carried out on replay-attack and CASIA. In oth-
er words, the model get trained on replay-attack dataset and
is tested on CASIA or vice versa.

model replay-attack CASIA

Motion [29] 48.28 50.25
LBP [29] 57.90 47.05

LBF-TOP [29] 61.33 50.64
Motion Mag [26] 47.00 50.10

Spectral cubes [30] 50.00 34.38
Colour Texture [3] 37.70 30.30

single

CNN-Stacking 41.60 22.72
CNN-3DConv 49.60 37.74
CNN+LSTM 42.73 41.10

CNN+Conv-LSTM 48.70 33.20
optical flow 30.14 36.80

fusion stacking 40.40 20.59

Table 2. HTER performance for cross-dataset evaluation.

4. CONCLUSION

In this paper, we conduct an extensive investigation on a series
of spatial temporal models based on deep learning for face
anti-spoofing task. We compare the performance of the sin-
gle stream model, named as CNN-Stacking, CNN-3DConv,
CNN+LSTM, CNN+ConvLSTM, which take different types
of raw images as the input. A two-stream structure, with a
second stream constructed on optical flow, is also proposed.
With proper fusion scheme, the two stream structure, with it-
s first stream using CNN-Stacking, gives the state-of-the art
performance.
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cel, “Motion-based counter-measures to photo attacks in face
recognition,” IET biometrics, vol. 3, no. 3, pp. 147–158, 2013.

[3] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour
Hadid, “Face spoofing detection using colour texture analysis,”
IEEE Transactions on Information Forensics and Security, vol.
11, no. 8, pp. 1818–1830, 2017.

[4] Di Wen, Hu Han, and Anil K Jain, “Face spoof detection with
image distortion analysis,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 4, pp. 746–761, 2015.

[5] Lei Li, Xiaoyi Feng, Zinelabidine Boulkenafet, Zhaoqiang Xi-
a, Mingming Li, and Abdenour Hadid, “An original face anti-
spoofing approach using partial convolutional neural network,”
in Image Processing Theory Tools and Applications (IPTA),
2016 6th International Conference on. IEEE, 2016, pp. 1–6.

[6] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al.,
“Deep face recognition.,” in BMVC, 2015, vol. 1, p. 6.

[7] Eduardo Valle and Roberto Lotufo, “Transfer learning using
convolutional neural networks for face anti-spoofing,” in Im-
age Analysis and Recognition: 14th International Conference,
ICIAR 2017, Montreal, QC, Canada, July 5–7, 2017, Proceed-
ings. Springer, 2017, vol. 10317, p. 27.

[8] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Li-
u, “Face anti-spoofing using patch and depth-based cnns,” in
Biometrics (IJCB), 2017 IEEE International Joint Conference
on. IEEE, 2017, pp. 1–6.

[9] Zhenqi Xu, Shan Li, and Weihong Deng, “Learning temporal
features using lstm-cnn architecture for face anti-spoofing,” in
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference
on. IEEE, 2015, pp. 141–145.

[10] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao,
“Joint face detection and alignment using multitask cascaded
convolutional networks,” IEEE Signal Processing Letters, vol.
23, no. 10, pp. 1499–1503, 2016.

[11] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu, “3d convolu-
tional neural networks for human action recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol.
35, no. 1, pp. 221–231, 2013.

[12] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[13] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo, “Convolutional lstm net-
work: A machine learning approach for precipitation nowcast-
ing,” in Advances in neural information processing systems,
2015, pp. 802–810.

[14] Karen Simonyan and Andrew Zisserman, “Two-stream con-
volutional networks for action recognition in videos,” in Ad-
vances in neural information processing systems, 2014, pp.
568–576.
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