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ABSTRACT

A novel unsupervised sparse component extraction algorithm for
diagnosing micro defects in thermography imaging system is
presented. The approach is optimized under Variational Bayesian
framework, which is fully automated and does not require manual
selection of the parameters in the solution. An internal sub sparse
grouping mechanism and adaptive fine-tuning have been built into
the proposed algorithm to control the sparsity. The proposed
method is used to automatically detect the micro defects on metals.
Other contending defect feature extraction and sparse pattern
extraction methods are employed for comparison. The algorithm
has been shown to improve the detection precision of both artificial
and natural cracks.

Index Terms — Low-rank decomposition, variational Bayes,
diagnostic imaging system, sparse decomposition.

1. INTRODUCTION
In recent years, the sparse decomposition has been widely used in
applications such as image. The robust PCA (GSPCA) is proposed
to separate the sparse patterns [1]. Peng et al. proposed sparse and
low-rank decomposition for linearly correlated images [2]. Chen et
al. proposed fast convex optimization algorithms for exact recovery
of a corrupted low-rank matrix [3]. The variational Bayesian (VB)
sparse PCA and Markov chain Monte Carlo (MCMC) sparse PCA
with specific prior are proposed for adaptive sparse decomposition
[4-5]. In all cases, sparse treatment works well in limited
application field where in such situation, the sparse decomposition
will invariably suffer from either under- or over-sparseness which
subsequently lead to ambiguity in extracting of target component.
Thus, the above suggests that the present form of sparse control
strategy is still technically lacking.

In this paper, a novel adaptive sub-group sparsity component
decomposition method is proposed to extract anomalous patterns
for micro-defects in the Eddy Current Pulsed Thermography (ECPT)
system. Our proposed model allows: (i) Unlike the general model,
the method imposes automatically sparseness control as well as
rendering sub-group so that the decomposition can be iteratively
optimized. This overcomes the problem of under- and over-sparse
factorization. (ii) Both control parameter and decomposition is
learned and adapted as part of the matrix factorization by using
variational Bayes approach. The proposed method can significantly
improve the detection precision of the defects, which has been
demonstrated on the steel artificial and natural cracks.

The paper is organized as follows: Section 2 discusses the
proposed methodology. Section 3 describes the experiment setup.
The experimental results and discussion are presented in Sections 4.
Finally, Section 5 describes the conclusions.

2. PROPOSED METHODOLOGY

2.1. Sparse Pattern Modeling and Extraction

The general model of factorization will invariably suffer from
either under- or over-sparseness which subsequently lead to
ambiguity in separating sparse patterns. In order to deal with the
issue, the robust PCA can be replaced by the new sparse control
model, which is expressed as [1]:

'Y L S N   (1)
where  is the parameter that controls the sparse level of S . The
algorithm uses an adaptive iteration algorithm to estimate the
optimal S and  .

L is the low-rank matrix, which is updated by using the
factorization TL UV , where U is a K r matrix, and V is a
N r matrix. U and V can be obtained by using the singular
value decomposition.

In this work, S is the sparse matrix, each entry of S can be
assumed to obey the independent Gaussian distribution, that is:

1( | , ) ( | 0, ( ) )S α q
ij ij

i j
p s   N (2)

where q is the hyperparameter and can be heuristically set. The
appropriate q can be determined by using the Monte-Carlo
approach. Therefore, it does not appear in other distribution
formula. ij can be assumed to obey the Jeffrey’s priors and can
be denoted as:

1( ) ( )     ,ij ijp i j    (3)

In reality, q
ij  tends to become large finite value, while the

corresponding ijs will approximate to zero.
In (1), the conditional distribution for observation is expressed

as:
1( ' , ) ( ' | , )Y |U,V,S, Y UV S ET

KNp     N (4)
where  is the precision of Gaussian distribution and follows the
Jeffrey’s priors, 1( )p    . Therefore, the joint distribution is
expressed as:

( ' , ) ( ' , )
          ( ) ( ) ( , ) ( ) ( ) ( )
Y ,U,V,S,γ,α, Y | U,V,S,

U | γ V | γ S | α γ α
p p
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 



(5)

2.2. Parameters Learning Strategy by VB Method

The posterior distribution of the thi row of U , which is
expressed as ui , obeys the multivariate Gaussian distribution, it
can be denoted as:

( ) ( | , )Uu u u Σi i iq    N (6)
The covariance and mean are expressed as follows:
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1( )U TΣ V V Γ   (7)

( '' )T TU Tu Σ V y si i i     (8)

where 1( ( ,..., ))Γ Γ rdiag   is a diagonal matrix. Similarly, the

posterior distribution of the thj row of V is expressed as v j and
obeys the multivariate Gaussian distribution:

( ) ( | , )Vv v v Σj j jq    N (9)

The covariance and mean are denoted as:
1( )V TΣ U U Γ   (10)

( '' )
T TVv Σ U y sj j j     (11)

where TU U and TV V can be computed by combining the mean,

the correlation coefficient, and the covariance. L can be computed
as follows:

TL U V (12)

The posterior distribution of j is a Gamma distribution, and
the mean estimation is expressed as:

1
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(13)

The required expectations are given by

 TT Uu u u u Σj j j j jj
K     (14)

 TT Vv v v v Σj j j j jj
N     (15)

The posterior distribution of ijs follows a Gaussian distribution
and can be denoted as:

( ) ( | , )Sij ij ij ijq s s s N (16)

The covariance and mean are denoted as follows:
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The posterior probability distribution of ij obeys a Gamma
distribution, and the mean of ij is expressed as:

2
1

( )S
ij q

ij ijs





 
(19)

The posterior probability distribution of  obeys a Gamma
distribution and the mean of  is expressed as:
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where ( )tr  denotes trace operator and
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Using Eqn. (1), the function of  can be expressed as:

( ) 'ij ij ij ij
i j i j i j i j

f l s n y        (21)

By adopting gradient descent method, the update for  assumes the
form, namely

1( ) and n n
ij ij

i j i j

df s s
d
   


    (22)

where  is learning rate and n denotes iteration time.
There is a necessity to develop a stopping criteria for adaptive

sparse control. In this work, the sub-grouping strategy is proposed
to guarantee the stop criteria.

S is a sparse matrix where most entries are near to zero, where
only a few of those take significance. Specifically, the K-means
clustering algorithm is used to separate 1s into two classes, and

gets the center as well as the label of 1is . 1 2[ , ]Tc c c denotes the
clustering centroid locations, 1c denotes the centroid location of
the first class, and 2c denotes the centroid location of the second
class. The within-cluster sums of point-to-centroid distances

2 1d R are computed by Euclidean distance. 1d denotes
within-first-cluster sums of point-to-centroid distances, and 2d
denotes within-second-cluster sums of point-to-centroid distances.

[1,2]jd j and R are computed by using Eqn. (30). R  (e.g.
610 ), the iteration terminates, namely:
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 (23)

In summary, the specific steps of the proposed method can be
summarized in Table 1.

Table 1. Proposed Sparse Pattern Extraction

Input: 'Y matrix representation of Z principal components of
ECPT thermal video.
Output: thermal low-rank pattern TUV , sparse pattern S , optimal
parameter 
Procedure:

Initialize:
1 1
2 2

0, , , , , , ratio, T TU AΣ V Σ D M q   
while 1R || R   
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 

   

2

2 2

( ' ) ( ' )

'

2
2

1
( ) '

TT T TU T V

TT

T TU V

S T

u Σ V y s v Σ U y s

L U V u v

u u Σ v v Σ

Y UV S

i i i j j j

ij ij i jq
ij

j

j j j jjj jj

ij q
ij ij F

s y

a K N
b K N

KN
s

   

 
   



 
 

     

 

   

   

  


 


   

 
  

；

；

；

end
Compute 1 2,d d in (23) by using the K-means algorithm.

1 2R d d

Note: MATLAB© demo code of the proposed method can be found
in http://faculty.uestc.edu.cn/gaobin/en/lwcg/153408/list/index.htm
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3. EXPERIMENT SETUP
The experimental setup is shown in Fig.1. An Easyheat 224 from
Cheltenham Induction Heating is used for coil excitation. The
Easyheat has a maximum excitation power of 2.4 kW, a maximum
current of 400 Arms and an excitation frequency range of 150-400
kHz (380 Arms and 256 kHz are used in this study). The IR camera,
FLIR A655sc is equipped with an uncooled, maintenance free,
Vanadium Oxide (VoX) microbolometer detector that produces
thermal images of 640 x 480 Pixels. These pixels generate crisp and
clear detailed images that are easy to interpret with high accuracy.
The FLIR A655sc will make temperature differences as small as 50
mK clearly visible. Two kinds of samples are prepared: 1) three
stainless steel samples (120mm×60mm×5mm) with three different
size of cracks in each have been prepared (i.e. one sample is shown
in Fig. 1c). In the experiment, coil is placed in the middle of the
crack which can be seen in Fig.3b. In this study, the frame rate of
100 Hz is chosen, and 200 millisecond videos are recorded in the
experiments. 2) Thermal natural fatigue cracks in steel blade is
provided by Alstom for validation. In the blade, flaws are produced
in-situ with controlled thermal fatigue loading. In this study, one
natural crack: 150BBB1353 is used for testing. The crack location
is marked with red circles in Fig. 1e. A Helmholtz coil is selected
for inspection. In study, the setting =2q . The event based F-score
is used for evaluating the detection performance of the different
algorithms [6].

(a)

(b) (c)

(d) (e)
Fig. 1: (a) Inductive thermography system. (b) The coil which is
placed in the middle of the crack. (c) Steel test sample with
artificial cracks. (d) Steel blade with thermal fatigue natural crack.
(e) Natural crack location map

4. RESULTS AND DISCUSSION

4.1. Comparison of Common Adopted Thermal Feature
Extraction Methods

General thermal based defect feature extraction methods are
employed for comparison. These include manually selection of
original thermal image for defect detection, Independent
Component Analysis (ICA), Pulsed Phase Thermography (PPT),
Thermographic Signal Reconstruction (TSR), and Principle
Component Analysis (PCA) [7-10].

The contrast between defect and non-defect patterns is clearly
visible, the proposed method has retained superior performance
than other methods. To verify the proposed system, thermal fatigue
nature crack (a 1 mm length crack) in steel blade is used for testing.
With prior knowledge of other NDT technique, the hot spot of
crack is located by human judgment and can be visually identified
in Fig. 2(a). However, it is extremely difficult for human detection
due to the complex geometric shape and crack are significantly
small. These challenges also indicate that the target information in
thermal images suffer significantly from background and noise. Fig.
2 shows the comparison study of natural crack detection.

Fig. 2(a) is the human selection of original thermal image. In
comparison, it is clearly seen that the selection method of thermal
image, ICA, TSR and PCA methods fail to determine the correct
spatial pattern of defect. From Fig. 2 (a) to Fig. 2 (e) panels, they
show a considerable level of mixing ambiguities which have not
been accurately resolved. The PPT works acceptable with defect
location. However, the extracted singular pattern has issue of
pattern dispersion (In reality, the 1mm crack only contains few
pixels) and it has not fully reduced the background interface.

(a) (b) (c)

(d) (e) (f)
Fig. 2: Natural crack thermal patterns of (a) Original thermal image, (b) ICA, (c) PPT, (d) TSR, (e) PCA, (f) Proposed method
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(a) (b) (c) (d) (f)
Fig. 3: Natural crack thermal patterns of (a) Greedy sparse PCA, (b) MCMC sparse PCA, (c) VB sparse PCA, (d) BRTF, (f) the proposed
method

Moreover, it requires human selection with specific frequency
frame for visualizing. On the other hand, the proposed methods has
successfully not only extracted defect spatial pattern with high
accuracy but also completely suppress the background interface. In
order to quantitative evaluate the results, the event based F-score is
computed. Fig. 2(a) is the standard template of events arrangement
for steel blade with thermal fatigue natural crack. In Fig. 2(a), the
event of 5 is the defect event, and others are interference. The
F-score of the natural crack and the artificial crack is summarized
in Table 2. All events selection are based on human annotation
which are termed as ground truth.

Table 2: Performance comparison of F-score
Natural
crack

Artificial cracks(different depths)
13.mm 2.8mm 3.5mm

ICA 0.67 0.50 0.50 0.50
PPT 1.00 0.00 0.29 0.00
TSR 0.29 0.29 0.50 0.00
PCA 0.33 0.00 0.50 0.80

Proposed 1.00 1.00 1.00 1.00

The F-score has been calculated for detecting artificial defects
with different depth and natural cracks, respectively. The results for
TSR, PCA and PPT give the worst performance since F-score falls
below 50% in average. The ICA gives mediocre performance with
an average F-score around 50%. The proposed method have
significantly improved the F-score rate for all artificial defects. In
addition, the average improvement is more than 60% compared
with other methods.

4.2. Comparison of Different Sparse Decomposition Methods

Previous sections prove that the sparse patterns extraction takes
important role in quantitatively analyzing the cracks. This section
compares the proposed method with other well-known sparse
pattern extraction algorithms on defect detection. They are the
Greedy Sparse PCA, Variational Bayesian (VB) sparse PCA,
MCMC sparse PCA and BRTF [11]. The results are compared in
term of accuracy with the same specimen. In our proposed method,
the sparse patterns extraction is applied by updating the sparse
control parameters that gives superior results. Fig. 3 show the
extraction results.

In terms of validation, the obtained result indicated that the
greedy sparse PCA, MCMC sparse PCA, VB sparse PCA, and
BRTF methods lead to poor accuracy and the result is highly
influenced by the background information. The F-score has been
summarized in Table 3. The results for greedy sparse PCA, VB
sparse PCA, BRTF and MCMC sparse PCA give worse
performance since the F-score falls below 50% in average. By
contrast, the proposed method has significantly improved the
F-score for both artificial defects and natural crack where the

average improvement is more than 60% better compared with the
other methods.

Table 3: The F-score by different sparse methods
Natural
crack

Artificial cracks(different depths)
13.mm 2.8mm 3.5mm

GSPCA 0.33 0.00 0.00 0.00
MCMCSPCA 0.29 0.50 0.50 0.50
VBSPCA 0.33 0.29 0.50 0.50
BRTF 0.33 0.50 0.50 0.50
Proposed 1.00 1.00 1.00 1.00

In summary, the automatic sparseness control is necessary for the
attainment of optimal sparse pattern exaction. The uniform constant
sparsity control raises a consequential issue, since it is not possible
to determine a priori which the decomposition should be assigned
the degree of sparseness. This poses a difficult problem in
conventional methods which requires manual setting of the sparsity
parameters such as greedy sparse PCA. For MCMC sparse PCA
and Variational Bayesian sparse PCA, although the update
parameters have advantages to bypass human intervention whereas
it brings the drawbacks to the incorrect selection of prior
distribution for the model parameters.

5. CONCLUSIONS
In this paper, variational Bayes sub-group adaptive sparse
component extraction algorithm has been proposed for thermal
NDT&E. The physics interpretation of thermal patterns as well as
the sparse decomposition has been conducted. The proposed sparse
pattern extraction method allows abnormal pattern to be extracted
automatically for flaw contrast enhancement. The proposed method
has been able to reduce interference from background information.
In order to validate the algorithm, the natural crack and the artificial
crack with the different depth have been used. In this work, F-score
has been used to objective measurement the performance of the
different methods. Compared with the other methods, the proposed
method has significantly improved the accuracy of the defect
detection by approximately 60%.
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