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ABSTRACT

In this paper, we present an approach for detecting faults
within seismic volumes using a saliency detection framework
that employs a 3D-FFT local spectra and multi-dimensional
plane projections. The projection scheme divides a 3D-FFT
local spectrum into three distinct components, each depict-
ing variations along different dimensions of the data. To
detect seismic structures oriented at different angles and to
capture directional features within 3D volume, we modify
the center-surround model to incorporate directional compar-
isons around each voxel. The weighted combination of the
obtained features then yields a saliency map. Experimental
results on a real seismic dataset from the Great South Basin
in New Zealand show the effectiveness of the proposed al-
gorithm in the detection of complex fault networks, which
are hardly conspicuous within original seismic volume. The
subjective evaluation of the results show that the proposed
method outperforms the state-of-the-art saliency algorithms
and seismic attributes in detecting complex structures and
holds a promising future in computer-aided extraction of
other geologic features as well.

Index Terms— Saliency detection, Directional compar-
isons, Spectral projection, 3D-FFT, Seismic interpretation,
Seismic attributes.

1. INTRODUCTION

The detection of subsurface structures such as faults, salt
domes, gas chimneys, and channels is one of the fundamen-
tal steps in the exploration of oil, gas, and hydrocarbons.
However, the dramatic growth in the size of acquired seismic
datasets is in turn making manual interpretation extremely
time consuming and labor-intensive. Automatic saliency
detection algorithms aim at highlighting salient regions in
images and videos by taking into account the attention mech-
anism of the human visual system (HVS) [1]. Saliency de-
tection have been studied extensively in the context of natural
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images and videos [2-5]; however, it has been rarely explored
within seismic domain for automation or attention modeling.
Bottom-up saliency detection in multi-dimensional data ex-
ploits both spatial and temporal cues to predict regions that
attract human attention instantly. On the other hand, ap-
proaches based on top-down saliency framework embeds a
priori knowledge such as shape, orientation, size, or one or
more templates of desired features into saliency detection.
Such attention models can not only be used in the automation
of seismic interpretation to predict the attention of human in-
terpreters but also provide a user-assisted framework, which
in turn makes the saliency detection tunable to desired fea-
tures and structures.

Seismic structures are mostly characterized by subtle
changes in amplitude, texture, and contrast. Furthermore,
the contextual information in the form of object’s surround-
ings and geology also plays an important role in seismic
interpretation. Therefore, the majority of saliency detection
algorithms originally designed for natural images and videos
fails to perform adequately on seismic data. The utilization
of transform domain techniques such as FFT can not only
capture energy variations within multi-dimensional data ef-
fectively but are also computationally less expensive. Based
on the spectral decomposition of 3D-FFT cube, we recently
proposed an approach for detecting salient objects within
seismic volumes in [6] and this work is a continuation of our
work on visual saliency for seismic interpretation.

In this paper, we improve our approach in [6] and present
the effectiveness of the proposed scheme to detect complex
fault networks, which are characterized by subtle variations
in amplitude and texture. We demonstrate that attention mod-
els based on multi-dimensional spectral projections can en-
hance the detection of seismic features and structures that are
barely visible from the original seismic data. Furthermore,
we also show the efficacy of directional center-surround com-
parisons and weighted combination of spectral projections in
the detection of seismic faults that are oriented at different an-
gles. Finally, we also present the excellence of the proposed
scheme on a real dataset and compare it with state-of-the-art
saliency algorithms and seismic attributes.
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Fig. 1: The block diagram of the proposed method.

2. SALIENCY IN SEISMIC INTERPRETATION

Several terabytes of data are collected everyday using mod-
ern acquisition techniques that undergo a series of process-
ing steps, which require powerful computers, sophisticated
software, and specialized manpower. To extract information
from such huge data, interpreters manually delineate impor-
tant structures, which contain hints about petroleum and gas
reservoirs. Because of limited availability of automated tools
and software for detection, manual interpretation is becom-
ing extremely laborious and tiresome. In seismic interpreta-
tion, attention models based on visual saliency are important
to predict and direct the attention of human interpreters to
geologically important structures and highlight the areas of
interest within seismic sections. Using such attention models,
we can not only assist interpreters by directing their attention
to the areas, which contain geologically important structures
for the entrapment of oil and gas reservoirs but also automate
the process of seismic interpretation.

In seismic interpretation, Drissi et al. [7] and Faraklioti
and Petrou [8] proposed approaches for automated horizon
picking based on salient features detection. Furthermore, two
novel algorithms based on visual saliency for the detection
and delineation of salt domes are presented in [9] and [10],
respectively. Ahuja and Diwan [11] carried out a study to gain
heuristic knowledge of experts while interpreting seismic im-
ages. Similarly, another study of various saliency detection
algorithms to observe which algorithm closely mimics the in-
terpreter’s visual attention during the interpretation of gravity
and magnetic data is presented in [12]. These papers show
that saliency detection can be used to develop new techniques
to compensate or augment biases and guide the interpreter’s
attention to important areas in images.

3. PROPOSED METHOD

Saliency detection based on multi-spectral projection decom-
poses a 3D-FFT spectrum of data to depict motion variations
along all three dimensions of a 3D volume. Subsequently, the
application of directional center-surround (DCS) model high-
lights the variations along desired orientations within pro-
jected space. Given a 3D seismic data volume V of size
T x X x Y, where T represents time or depth, X represents

crosslines, and Y represents inlines, we compute saliency us-
ing the block diagram shown in Fig. 1. In this paper, we use
a different approach as compared to [6] in the computation of
spectral projections and weighted combination of extracted
features to yield a saliency volume, which highlights even
subtle variations of seismic structures in an effective manner.

In the first step, we compute 3D-FFT of V' using a local
cube with a sliding window having more than 50% overlap to
yield a volume F'. In the second step, we perform decomposi-
tions of the spectral cube as explained in Fig. 2. Within a 3D
spectral cube in f;- f,.- f, coordinate system, if a spectral point
is closer to f5- f,-plane, then its projection on f,-f,-planei.e.
along f;-direction will depict variations more prominently as
compared to the projections on f;-f, or f;-f, planes. There-
fore, we decompose the 3D spectral cube by projecting the
spectral point F[4, j, k] along different directions as

Pm '7 .7k
Foulisj, K] = Flijo k] x —2ml M e o,
2+ j% + k2
(1)

where projections P, along time, crossline, and inline direc-
tions are represented by \/j2 + k2,112 4+ k2, and +/i2 + 52
respectively. F' represents the multi-dimensional FFT domain
defined as F' = K ® C,,, where C), represents a local cube of
side length n within volume V', ® represents tensor product,
and KC is the Kronecker matrix defined as

K=D,®D,®D., 2)

where D, D, and D, are DFT transformation matrixes and
® represents the Kronecker product. The spectral projections
are not computed at the center of the local cube as it represents
the DC component and doesn’t reflect any changes.

In the third step, we extract features also known as spec-
tral energies, E,,, where m € {t,z,y}, from spectral pro-
jections based on the absolute mean of local cube. The pro-
cesses of feature extraction enhance motion variations and
provide pixel level descriptions based on spectral energies
in the neighborhood of a voxel. In the fourth step of the
proposed method, we apply the DCS model to construct the
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and decompositions.

saliency maps S, using E,,, as

1
Sm[t7xay] =3 Z |Em[t,l',y:|_
%0,J0,70
w - Em[t + io,l‘ +j07y + T0]|, me {t,.’f,y},

3

where () represents the total number of points included in the
summation and w represents Gaussian weights. g, jo, 7o are
chosen such that point [t + g, & + jo, y + ro] is in the imme-
diate neighborhood of point [t, z, y], such as within a direc-
tional window centered at [¢, x, y] as depicted in Fig. 3.

In order to incorporate a priori information, we can either
apply different directional filters pertaining to desired orien-
tations, sizes, structures, or shapes in DCS comparison or we
can apply different weights to various spectral projections to
enhance any desired feature within seismic volume. Alterna-
tively, we can also combine both to yield optimum results.
DCS comparisons for selected orientations along ¢, x, and ¢-
x directions are illustrated in Fig. 3, where color brightness
indicates the associated weights with each voxel with red be-
ing the highest. Similarly, we can create templates to embed
desired shape, size, and orientation information in DCS com-
parison model.

Finally, the saliency map S, which is of the same size as
that of V' is obtained as

S[i7j7 k] = Wt'St[i7ja k]+WuLSm[Z7Ja k]+WySy[Z’j7 k‘],
“
where W,,,, m € {t, x,y} represents a priori selected weights
to highlight projected features along any desired direction.
These weights can be set either equally to construct a saliency
map with equal distribution of projections along each axis or
empirically to highlight certain features along any particular
direction. For example, as in the case of interpreting normal
and reverse faults which are usually oriented along time/depth
direction, we can assign more weights to projected features
along time/depth direction that highlights faults in an effective
manner. Furthermore, the proposed approach is computation-
ally inexpensive as it is based on FFT and obtains saliency
maps with adjustable resolution by varying the cube size.

B

Fig. 3: Directional center-surround comparison along ¢, z,
and t-x directions, respectively.

4. EXPERIMENTAL RESULTS

In this section, we present the results of saliency detection on
a real seismic dataset acquired from the Great South Basin,
New Zealand. A typical seismic inline section from this
dataset containing multiple seismic faults is shown in Fig. 4a.
These faults are characterized by subtle variations in intensity
and texture, which make them extremely challenging and
difficult to detect. The ground truth for this seismic section
manually labelled by a geophysicist highlighting faults net-
work is shown in Fig. 4b. An ideal algorithm would not only
resolve spatial and temporal variations within seismic volume
but also highlight structural variations with respect to its sur-
rounding facies. The results of state-of-the-art saliency detec-
tion algorithms presented in [13-20] are shown in Fig. 4c-j,
respectively. The output of two seismic attributes, general-
ized tensor coherence [21] and coherence cube [22] are also
shown in Fig. 4k-1, respectively. The output of proposed
method with equal weights W, is shown in Fig. 4m; whereas
Fig. 4n displays the proposed saliency map with more weight
along the time direction.

The subjective evaluation of the results show that the
proposed method effectively highlights seismic faults as
compared to other state-of-the-art algorithms and seismic
attributes. While majority of saliency algorithms in Fig. 4 fail
to detect faults, seismic attributes contain noise. Because the
proposed method captures spectral variations along all three
dimensions of the seismic volume, it can be realized from
Fig. 4m-n that the proposed method effectively highlights all
faults within seismic section. Since faults are usually ori-
ented along vertical direction, assigning more weightage to
projections along time direction tunes out clutter and presents
faults clearly where each fault can be easily distinguished
from each other. Furthermore, it is also worth noting that the
amplitude of salient values detected by the proposed algo-
rithm are not only significantly higher as compared to other
methods but also more localized near seismic faults. Finally,
the resolution of the proposed approach is much better as
compared to other algorithms, which makes it advantageous
for applications such as seismic interpretation, which requires
not only fine perception but also efficient detection of subtle
features within 3D volumes. Therefore, the proposed ap-
proach is expected to not only become a very handy tool for
interpreter-assisted seismic interpretation but can also serve
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Fig. 4: The output of various saliency detection algorithms on a typical seismic inline section.

as a base attribute map for creating workflows for automated
detection of various geological structures.

5. CONCLUSION

In this paper, we presented a new saliency detection algorithm
for detecting complex fault networks by exploiting Fourier
spectrum of seismic volumes. The proposed approach em-
ployed multi-dimensional plane projections and directional
center-surround model for the detection of subtle faults within
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seismic volumes. We also demonstrated that the detection of
seismic structures or features can be potentially enhanced by
adding a priori information and assigning more weights to
a specific projection when computing a consolidated saliency
map. Experimental results on a real seismic dataset from New
Zealand showed the efficacy of the proposed scheme in the
detection of complex faults networks in a geologically com-
plex setting. Finally, the subjective evaluation of the results
showed that the proposed method outperformed the state-of-
the-arts methods and seismic attributes in detecting faults.
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