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ABSTRACT

This paper presents a universal approach for constant-time Gaussian
filters (O(1) GF) based on the Discrete Cosine Transform (DCT).
It is well known that DCT has the eight types of definitions. Exist-
ing methods of O(1) GF use difference DCT type according to their
original concepts. However, all types of DCT have not been studied
comprehensively and quantitatively. Unlike existing methods, the
proposed approach covers all types of DCT and moment preserva-
tion for arbitrary orders, which enables us to clarify differences of
O(1) GF derived from each DCT through a comprehensive analysis.
Based on the universal approach, a closed-form solution to optimize
weight coefficients is also proposed based on a simple convex anal-
ysis. Experiments found that DCT-7 shows the highest approximate
accuracy, which is a new conclusion different from existing methods.

Index Terms— constant-time Gaussian filter, discrete cosine
transform, sliding transform, moments

1. INTRODUCTION

Gaussian filter (GF) is one of the fundamental tools in image pro-
cessing, computer vision and computer graphics. It still has been
used in many modern applications of object recognition [1], vi-
sual saliency [2], edge-preserving smoothing [3, 4, 5, 6] and so on
[7]. These applications generally apply GF to many images, such
as video processing, or apply GF to an image many time using a
variety of parameter values, such as scale space analysis. These
scenarios have demanded to reduce the computational complexity of
GF if feasible. In particular, the computational time depending on
filter window size is a significant problem for high-resolution image
processing, which relatively use a large filter window.

An efficient solution to the large-window problem is constant-
time GF (O(1) GF) where constant-time means computational
complexity does not depend on filter window size, i.e., it runs in
O(1) time/pixel. The general framework of O(1) GF is that it
approximates a Gaussian kernel by a combination of few efficiently-
computable subkernels and then convolves each subkernel in O(1)
time/pixel. Thus, O(1) GF shows tradeoff between computational
complexity and approximate accuracy as a major performance factor.
We aim at achieving higher performance tradeoff. Many methods of
O(1) GF have been proposed in the past and widely-known ones in
them can be categorized into two groups: recursive approximation
[8, 9, 10, 11] and truncated cosine approximation [12, 13, 14, 15].
We discuss the latter because they have so far achieved the state-of-
the-art performance in this sense.

This work was supported by JSPS KAKENHI (Grant Number:
JP16K16092, JP17H01764).

Table 1. Coverage of DCT types and moment preservation.
Method DCT types Preserved
Elboher and Werman [12] DCT-1
Sugimoto and Kamata [14] DCT-5 µ0

Charalampidis [15] DCT-3 µ0, µ2

Ours DCT-1,3,5,7 µ0, µ2, µ4, . . .

All the cosine-based methods share the following framework.
They approximate a (truncated) Gaussian kernel by a linear sum
of (truncated) cosine terms and then convolve each cosine term in
O(1) time/pixel by efficient techniques. The approximate kernel
is substantially obtained via the Discrete Cosine Transform (DCT)
but a variety of DCT types have been used as Table 1 lists. Ex-
isting methods conceptually differ in several ways including which
DCT type used, how to derive weight coefficients and how to con-
volve cosine terms. For instance, Elboher and Werman [12] em-
ployed DCT-1 for kernel approximation and integral images [16, 17]
for cosine convolution. Sugimoto and Kamata [14, 5] accerelated
this method by using DCT-5 and sliding transform instead. Char-
alampidis [15] derived relationship of recursive approximation to
truncated cosine approximation using DCT-3,5 and then remarked
that DCT-3 produced more accurate Gaussian approximation than
DCT-5. Moreover, they indicated that the DCT-5 approach distorted
isotropy of two-dimensional GF and reduced this problem by deriv-
ing weight coefficients that preserved sum and variance of Gaussian
kernel before-and-after approximation by DCT-3. Thus, the existing
methods have been designed based on a variety of concepts. How-
ever, there exist no comprehensive analysis and quantitative experi-
ments that can cover all types of DCT and arbitrary moments.

This paper presents a universal approach in truncated cosine ap-
proximation that covers all types of DCT and arbitrary moments
such as sum, variance and so on. We also perform quantitative
analysis through our universal model. We formalize a Gaussian
kernel approximated by arbitrary DCT type as a general form and
comprehensively derive a close-form solution to obtain its optimal
weight coefficients that can preserve arbitrary moments. This solu-
tion provides more clear understanding and slightly-lower computa-
tional complexity than that of [15] because it is derived by a simple
convex optimization approach. Unlike [15], our experiments vali-
date the fact that DCT-7 is the most suitable in approximate accuracy
for GF especially when scale parameter is larger.

2. EXISTING WORK

This section describes Gaussian filter and moments of Gaussian, fol-
lowed by briefly introducing DCT-based O(1) GF and its remaining
problems. We discuss one-dimensional GF throughout the paper but
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Table 2. A parameter list of all types of DCT.
DCT Type T k0 n0

DCT-1 (Inverse DCT-1) 2N − 2 0 0
DCT-2 (Inverse DCT-3) 2N 0 1/2
DCT-3 (Inverse DCT-2) 2N 1/2 0
DCT-4 (Inverse DCT-4) 2N 1/2 1/2
DCT-5 (Inverse DCT-5) 2N − 1 0 0
DCT-6 (Inverse DCT-7) 2N − 1 0 1/2
DCT-7 (Inverse DCT-6) 2N − 1 1/2 0
DCT-8 (Inverse DCT-8) 2N + 2 1/2 1/2

it is noting worth that multi-dimensional isotropic GF is separable
into a multiple of one-dimensional GFs.

2.1. Gaussian filter

Let xt ∈ R (t ∈ Z) be an input sequence and hn ∈ R (n =
−N + 1, . . . , N − 1) a truncated filter kernel where N ∈ N is
called window radius. The convolution is defined by

(x ∗ h)t :=

N−1∑
n=−N+1

xt+nhn. (1)

We define the kernel as Gaussian kernel (sampled Gaussian [18]):

hn := η−1e
− n2

2σ2 , η :=

N−1∑
n=−N+1

e
− n2

2σ2 , (2)

where σ ∈ R+ is a scale parameter. The window radius N has to
be determined such that it supports most of Gaussian shape, e.g.,
commonly N = d3σe. Since the computational complexity of (1)
is O(N) time/pixel, the larger σ obviously causes the longer run-
ning time. This property is a significant problem for high-resolution
image processing, which requires relatively-large σ.

2.2. Moments of Gaussian

An important measure for Gaussian function is moments. The m-th
order moment of discrete kernel hn is defined by

µm :=

N−1∑
n=−N+1

nmhn. (3)

Low-order moments are particularly named sum µ0, mean µ1, vari-
ance µ2, skewness µ3 and kurtosis µ4. In the case of Gaussian
kernel (2), µ2m+1 = 0 (m = 0, 1, . . .) holds thanks to its sym-
metry. We therefore deal with only µ2m in later discussion. It is
well-known that ideal continuous Gaussian kernel exactly satisfies
µ0 = 1, µ2 = σ2, µ4 = 3σ4 and so on; by contrast, the discrete
Gaussian kernel (2) perturbs the moment values due to discretization
and window truncation. As [15] also pointed out, moment preserva-
tion is important in image filtering. For instance, if µ0 6= 1, the
filter would change brightness of images and the subjective quality
drastically would degrade.

2.3. O(1) Gaussian filter using DCT and its remaning problems

A state-of-the-art solution to the large-window problem is O(1)
GF using DCT. Gaussian kernel (2) can be well-approximated by
a linear sum of few cosine terms via DCT because it is an even

Table 3. Metric matrices for each DCT type.
DCT Type Mn ∈ RN×N Mk ∈ RN×N

DCT-1 diag( 1
2
, 1, . . . , 1

2
) diag(2, 1, . . . , 2)

DCT-2 diag( 1
2
, 1, . . . , 1) I

DCT-3 I diag(2, 1, . . . , 1)
DCT-4 I I
DCT-5 diag( 1

2
, 1, . . . , 1) diag(2, 1, . . . , 1)

DCT-6 diag(1, . . . , 1, 1
2
) diag(2, 1, . . . , 1)

DCT-7 diag( 1
2
, 1, . . . , 1) diag(1, . . . , 1, 2)

DCT-8 I I

function whose spectra decay exponentially. As mentioned in de-
tail later, each cosine term can be convolved in O(1) time/pixel by
sliding transform [19]. Hence, this overall approach runs in O(1)
time/pixel, that is independent of window radius N .

This paper sheds light on the following two remaining problems
(see Table 1). i) Although the existing methods use different types of
DCT, it is still unclear which in all types of DCT achieves the high-
est performance in terms of a quantitative measure. Actually, each
existing method has argued just one type of DCT. ii) Many state-of-
the-art methods except for [15] have not attempted moment preserva-
tion explicitly. Moment preservation is strongly demanded in DCT-
based O(1) GF because the cosine approximation basically distorts
moments much more than the truncated Gaussian kernel (2). It is
also important for a fair approximate accuracy comparison among all
types of DCT. Regarding these two points, [15] stated that variance
µ2 is also important for preserving the isotropy of two-dimensional
GF. However, their discussion only covered how to preserve µ0 and
µ2 for DCT-3. In order to reach to more in-depth understanding, we
should discuss the above two points from a more general viewpoint.

3. PROPOSED UNIVERSAL APPROACH

We present a universal approach for DCT-basedO(1) GF that covers
all types of DCT and supports moment preservation (see Table 1).

3.1. General form of DCT and it sliding transform

Gaussian kernel is an even function whose spectra exponentially de-
cay to zero. From this fact, we consider to approximate the Gaussian
kernel (2) by a linear sum of K cosine terms:

hn ≈
K−1∑
k=0

ĥ(k) cos

(
2π

T
(k + k0)(n+ n0)

)
(4)

where ĥ(k) ∈ R (k = 0, 1, . . . , N − 1) are weight coefficient that
exponentially decay to zero, to be discussed in Section 3.3. The
approximate kernel (4) can be interpreted as an (inverse) DCT. Im-
portantly, it covers all types of DCT by appropriately selecting the
parameters T , k0 and n0 as listed in Table 2. Substituting (4) for (1),

(x ∗ h)t ≈
K−1∑
k=0

ĥ(k)x̂
(k)
t , x̂

(k)
t :=

N−1∑
n=−N+1

xt+nC(k)n , (5)

where we introduced C(k)n = cos
(
2π
T

(k + k0)(n+ n0)
)

for sim-
plicity. The variable x̂(k)t indicates the k-th short-time transform co-
efficient at time t of the target sequence x̂t. Importantly, we can se-
quentially compute it using a relational expression called that holds
between three consecutive short-time transform coefficients x̂(k)t±1
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Table 4. Comparison of approximate accuracy and weight coefficients derived by existing and proposed approaches. Parameter are set to
σ = 2,N = 7 (window size 2N−1 = 13),K = 3 andM = 2, equivalent to [15] for sanity check. We assume the±6σ-supported Gaussian
kernel to be ideal shape. Ideal moment and error values are emphasized in bold.

Method ĥ(0) ĥ(1) ĥ(2) µ0 µ2 µ4 RMSE
Convolution (N = d6σe) 1.000 4.000 48.000 0
Convolution (N = d3σe) 1.000 3.808 39.708 7.93× 10−4

[15] with DCT-3 (from original paper) 0.12916412 0.05765049 0.01155671 1.000 4.000 47.470 5.73× 10−4

[15] with DCT-3 (by our impl.) 0.12916355 0.05762658 0.01151695 1.000 4.000 47.429 5.73× 10−4

Ours with DCT-3 0.12916422 0.05765508 0.01156434 1.000 4.000 47.477 5.73× 10−4

and x̂(k)t called a shift property. Our approach is inspired from slid-
ing DCT based on second-order shift property [19]. Specifically,

x̂
(k)
t−1 + x̂

(k)
t+1 = 2C(k)1−n0

x̂
(k)
t + ∆t, (6)

where ∆t = C(k)−N+1xt−N+C(k)N−1xt+N−C
(k)
−Nxt−N+1−C(k)N xt+N−1.

Using (6), a new x̂
(k)
t+1 can be consecutively obtained from already-

computed x̂(k)t and x̂(k)t−1 inO(1) time/pixel. Moreover, the left-hand
side of (5) have the computational complexity of O(K). Hence, the
overall filtering process runs in constant-time regardless of window
length.

3.2. Universal analysis on all types of DCT

First, we discuss the symmetry of Gaussian kernel and the symme-
try of its approximate kernel. Since Gaussian kernel (2) is an even
function symmetric w.r.t. the axis of n0 = 0, (4) also has to sat-
isfy this condition to accurately approximate the Gaussian kernel.
This means that only DCT-1,3,5,7 (n0 = 0) are appropriate for the
approximation but DCT-2,4,6,8 (n0 = 1/2) are not. We therefore
focus only on DCT-1,3,5,7 in later discussion.

Second, in the shift property (6), more arithmetic operations can
be reduced by factorizing phase of cosines with the same values.
Specifically, in DCT-1, C(k)±(N−1) = (−1)k and C(k)±N = (−1)kC(k)1

hold; in DCT-3, C(k)N−1 = C(k)−(N−1) and C(k)±N = 0 hold; in DCT-5,

C(k)±(N−1) = C(k)±N holds; in DCT-7, C(k)±(N−1) = −C(k)±N holds. Using
these equations, ∆t in (6) can be specified in each DCT type as

∆(DCT-1)
t = (−1)k{(xt−N + xt+N )− C(k)1 (xt−N+1 + xt+N−1)},

∆(DCT-3)
t = C(k)N−1(xt−N + xt+N ),

∆(DCT-5)
t = C(k)N−1(xt−N + xt+N − xt−N+1 − xt+N−1),

∆(DCT-7)
t = C(k)N−1(xt−N + xt+N + xt−N+1 + xt+N−1).

Each sliding transform can be computed with roughly two multipli-
cations by appropriately using look-up tables for cosine values and
so on. Because the approximation order K has a very small value in
practice and the weight coefficient ĥ(k) are precomputed, the overall
filtering process runs fast.

The sliding transforms derived above are basically the same as
those of existing work in some cases but new in the other cases. The
results of DCT-3 and DCT-5 are basically equivalent to those of [15]
and [14], respectively; however, those of DCT-1 and DCT-7 have not
been explored in the literature. Evidently, our universal approach
provides comprehensive understanding about all types of DCT for
O(1) GF. Moreover, we should mention to avoid misunderstanding
that short-time weight coefficients x̂(k)t are equivalent to short-time
DCT coefficients in the cases of DCT-5,6,7 (T = 2N − 1); by con-
trast, they are very similar but different otherwise. This is caused by

a mismatch of period length T to window size 2N − 1. For this rea-
son, the above sliding transforms essentially differ from the sliding
DCTs derived in [19].

3.3. Optimization with moment preservation

We describe how to appropriately compute ĥ(k) for each of DCT-
1,3,5,7. Given scale σ and approximation order K, the optimal
values of ĥ(k) that minimize approximate error of Gaussian ker-
nel can be computed as follows: We first introduce the following
vector form for explanation: h = [h0, . . . , hN−1]> ∈ RN , ĥ =

[ĥ(0), . . . , ĥ(K−1)]> ∈ RK , C = {C(k)n }N−1,K−1
n=0,k=0 ∈ RN×K and

W = diag( 1
2
, 1, . . . 1) ∈ RN×N , which is a weight matrix for

dealing with even symmetry of kernel. We also define some vec-
tors about moments: µ = [µ0, µ2, . . . , µ2M−2]> ∈ RM and P =

{n2m}N−1,M−1
n=0,m=0 ∈ RN×M where M is the number of moments to

be preserved.
We derive a close-form solution that provides the optimum val-

ues of ĥ(k). The optimization can be formalized as the quadratic
problem with moment constraints

ĥ? := arg min
ĥ
f(ĥ) subject to g(ĥ) = 0, (7)

f(ĥ) :=
1

2
(h−Cĥ)>W (h−Cĥ) ∈ R, (8)

g(ĥ) := P>WCĥ− 1

2
µ ∈ RM . (9)

Theis problem can be solved by the method of Lagrange multiplier.
Specifically, F (ĥ,λ) := f(ĥ)−λ>g(ĥ) whereλ ∈ RM is a vector
of Lagrange multipliers. From ∂F/∂ĥ = 0 and ∂F/∂λ = 0, we
obtain the linear equation[

C>WC U
U> 0

] [
ĥ
λ

]
=

[
C>Wh
µ/2

]
. (10)

where U = C>WP . Using the least-square solution without mo-
ment constraints ĥLS =

(
C>WC

)−1
C>Wh, i.e., M = 0, we

can solve (10) as

ĥ? = ĥLS +
(
C>WC

)−1

US−1
(
U>ĥLS − 1

2
µ
)
. (11)

where S = U>
(
C>WC

)−1
U . This closed-form solution can

be understood as the one projected from ĥLS onto linear constraint
space g(ĥ) = 0 by oblique projections.

The above computation can be preformed negligibly fast. This
is because most vectors/matrices in (11) basically depend on K and
M that have very smalle values in practice, e.g., K = 4 and M = 2
at most. The two inverse matrices in (11) are regular and easy-to-
compute as shown below. We introduce Mn and Mk as shown in
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Fig. 1. Approximate error where K = 3 and M = 0, 1, 2 (columns). The most left column (M = 0) corresponds to least-square solution
without moment preservation. Obviously, DCT-3,7 are superior to DCT-1,5 and DCT-7 outperforms DCT-3 especially when σ < 3.

Table 3. Let us consider

C>WC = C>MnC +C>(W −Mn)C. (12)

The first term can be simplified using the orthogonality of DCT
matrix: C>MnC = T

4
Mk. In the case of DCT-3,5,7, the sec-

ond term is vanished since W = Mn. In the case of DCT-1,
W −Mn = diag

(
0, 0, . . . , 1

2

)
holds.

C>(W −Mn)C =
1

2
ss>. (13)

where s = {(−1)k}K−1
k=0 ∈ RK . From these results, using the

Sherman-Morrison formula,
(
C>WC

)−1
equals to

DCT-1 :
4

T

{
M−1

k −
(M−1

k s)(M−1
k s)>

N − 1 + tr(M−1
k )

}
, (14)

DCT-3,5,7 :
4

T
M−1

k . (15)

Obviously, this is a regular matrix in both cases. Moreover, S is non-
singular because of properties of Vandermonde matrix and Gram
matrix. Computing S−1 ∈ RM×M has low computational com-
plexity since M = 1 or M = 2 in practice, which is slightly more
efficient than the approach of [15], which requires inverse operation
of a K ×K matrix. Thus, as compared with the existing methods,
our universal approach is a generalization of the existing methods
but provides a tighter solution based on theoretical understanding.
Similar to [14], we determine an optimal value for N from given σ
and K by binary search according to truncation error. This compu-
tation runs negligibly fast as compared with main filtering process
since K and M have very small values in practice.

4. EXPERIMENTS AND DISCUSSIONS

We comprehensively compare the performance of Gaussian approx-
imation using each type of DCT via our universal approach. Table
4 shows weight coefficients and approximate error where σ = 2
and N = 7 (window size: 13), K = 3 and M = 2. This experi-
mental condition followed the one indicated in [15] for sanity check.
Here, we supposed ±6σ-supported Gaussian kernel as the ideal ker-
nel. Approximate error is quantified by Root-Mean-Square Error
(RMSE) between the ideal and approximate kernels. These results
showed that our approach exactly preserved sum µ0 and variance
µ2. Different parameter setting also showed the same tendency. An
important fact is that ±3σ-supported Gaussian convolution shows
not only variance distortion but also larger approximate error than

the two DCT-based O(1) GF. Hence, we state that our approach can
perform GF with higher accuracy than naive GF.

Figure 1 plots the approximate error of DCT-1,3,5,7 where σ ∈
[1, 8], K = 3 and M = 0, 1, 2. The saw-shape curves were caused
by variation of optimum window size to be integer. The larger M
produced the slightly larger error. This is intuitive because the more
constraints cause the smaller search space. More importantly, DCT-
3,7 significantly outperformed DCT-1,5 in approximate accuracy as
larger σ prominently showed. According to [15], DCT-3 shows
higher accuracy than DCT-5. However, more exactly, we found that
on average DCT-7 produces the most accurate approximation. This
important fact was firstly revealed through our universal approach.
As a whole, DCT-5 showed the worst accuracy and DCT-1 was the
next but it showed somewhat accurate results when σ was small. We
consider that these behaviors come from the shape of the first co-
sine basis of each type of DCT. Specifically, the basis of k = 0 in
DCT-1,5 is a DC component C(0)n = 1 but DCT-3,7 have an uni-
modal shape because of k0 = 1

2
. This shape match can promote to

approximate the Gaussian shape.
We also confirmed actual running time of naive convolution and

our O(1) GFs. The test image was ”baboon” (512×512 pixels, 8-bit
grayscale). The test environment mounted on Intel Core i5-6200U
2.30GHz CPU with 8GB main memory. All the implementations
were written in C++ and compiled by VC++2015 with ”/O2” option.
For fair comparison, we made all the methods share the similar num-
ber of multiplications per pixel: N = 4 (σ = 1) in ±3σ-supported
Gaussian convolution and K = 2 in DCT-based O(1) GF. As a re-
sult, the convolution took roughly 2.8–3.1 [ms] and DCT-basedO(1)
GF took approximately 1.5–1.7 [ms] regardless of scale σ and DCT
type. The major reason why DCT-basedO(1) GF is much faster than
convolution with small-sized window probably comes from memory
access cost. The performance of modern computers is dominated by
memory access, not CPU operations in most cases. For instance, (1)
requires (2N − 1) pixels but ∆t in (6) requires just 4 pixels.

5. CONCLUSIONS

This paper presented a universal approach for DCT-based O(1) GF
and analyzed its performance comprehensively. Our universal ap-
proach covered all types of DCT and arbitrary moments and pro-
vided a closed-form solution for optimal coefficients. In spite of its
wider coverage, our solution for moment preservation was tighter
than that of [15]. Through our discussion, we achieved a gener-
alized conclusion different from [15]: DCT-7 produces the highest
accuracy in DCT-1,3,5,7. Future work will extend this discussion to
multi-dimensional cases and other filters.
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