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ABSTRACT

Coral species, with complex morphology and ambigu-
ous boundaries, pose a great challenge for automated
classification. CNN activations, which are extracted
from fully connected layers of deep networks (FC fea-
tures), have been successfully used as powerful univer-
sal representations in many visual tasks. In this paper,
we investigate the transferability and combined per-
formance of FC features and CONV features (extracted
from convolutional layers) in the coral classification of
two image modalities (reflectance and fluorescence),
using a typical deep network (e.g. VGGNet). We ex-
ploit vector of locally aggregated descriptors (VLAD)
encoding and principal component analysis (PCA) to
compress dense CONV features into a compact repre-
sentation. Experimental results demonstrate that en-
coded CONV3 features achieve superior performances
on reflectance and fluorescence coral images, compared
to FC features. The combination of these two features
further improves the overall accuracy and achieves
state-of-the-art performance on the challenging EFC
dataset.

Index Terms— Transfer learning, deep convolu-
tional features, VLAD encoding, coral image classifica-
tion, fluorescence

1. INTRODUCTION

Due to natural and anthropogenic factors such as ocean
warming and pollution, the population of important
underwater species (e.g. coral reef and kelp) has largely
decreased in many areas. Such changes, which are as-
sociated with profound ecological, social and economic
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consequences, have drawn increased attention on ma-
rine environment protection from all sectors of society.
With the rapid development of robotics and imaging
techniques (e.g. AUVs and ROVs), a considerable num-
ber of underwater images are now available to study
changes in marine environments. However, manual
labeling this raw data for subsequent analysis is quite
a laborious task for expert analysts. Thus, researchers
seek automated solutions for the images annotation of
underwater images.

Underwater image classification is a challenging
task due to following reasons: (i) physical properties
of the water medium (e.g. absorption and scattering),
cause underwater images to suffer from color degra-
dation which is not present in the ground images. (ii)
water turbidity and floating particles result in underwa-
ter images exhibiting low contrast and limited visibility.
(iii) in case of coral species, they have large variations
in mophologies, size, color, shape, and texture across
classes, whose boundaries are often ambiguous. (iv)
class imbalance (i.e. non-coral species often predomi-
nate in the whole set) results in misclassified minority
coral classes [1]. Moreover, due to the aforementioned
challenges, common annotation techniques, such as
image labels and bounding boxes, are not suitable for
coral images. Instead, marine ecologists use point anno-
tations. As shown in Figure. 1, small patches centered
around each point annotation are extracted from an
image for classification.

Traditional methods for coral image classification
were developed based on handcrafted features, mainly
relying on texture descriptors, e.g. local binary pattern
(LBP) [2], gray-level co-occurrence matrix (GLCM) [3]
and Gabor wavelet response [4]. After CNNs made
remarkable success in ILSVRC, CNN-based methods
have been used for many applications. Recent works
have shown that CNN features have superior perfor-
mance compared to those well-designed handcrafted
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features in the coral classification task [5, 6]. Generally,
CNN features are extracted from fully connected layers
of the network, which capture global semantic infor-
mation as high-level features. However, this choice has
several drawbacks: (i) CNN features from higher layers
are more specific to their original task, while features
from intermediate or lower layers are more general to
other applications [7]. In case of coral images, most sub-
categories of corals are unseen in those large datasets
(e.g. ImageNet). Moreover, corals in fluorescence im-
ages rarely appear in common datasets. Thus, coral
images share less semantic information with the Ima-
geNet task, compared to other general ground images
(e.g. humans, animals, and buildings). (ii) Fully con-
nected layers capture global spatial layout information.
This characteristic may be effective in classifying objects
with clearly defined shape or contour, but may not be
useful in representing texture or edge, which are the
primary features for coral classification. In contrast,
deep convolutional features contain rich local infor-
mation, which provides more discriminative ability in
describing local regions.

The main contributions of this paper can be sum-
merized as follows: (i) we propose to apply a method
based on CNN and VLAD to coral image classification.
(ii) we investigate the combined strength of two types
of deep features (i.e. FC features and CONV features) in
coral image classification. (iii) we evaluate the transfer-
ability of deep CNN features to coral classification for
two image modalities (reflectance and fluorescence).

2. APPROACH

In this section, we describe our method of feature ex-
traction and feature coding for coral image classifica-
tion.

2.1. Feature extraction

In this work, we use the VGG-F pre-trained model de-
veloped by [9] for fast processing. It is provided by the
MatConvNet toolbox for MATLAB [10]. This architec-
ture is similar to AlexNet [11]. It comprises 5 convo-
lutional layers and 3 fully connected layers. The size
of input images is 224 x 224. The major difference be-
tween the structures of VGG-F and AlexNet is that, the
former used dense connectivity between convolutional
layers [9]. The output sizes of convolutional layers
and fully connected layers after the rectified linear unit
(ReLU) layers (thus all the activations are non-negative)
are shown in Table 1.

To extract CNN features, given an input image or a
patch, we resize it to 224 x 224, subtract the mean of
images in the whole set, and feed the patch through the
network. Then we take the 4096-dimensional output of

Table 1: The sizes of CONV and FC layers of VGG-F

| Layer [ Outputsize (N x N x D) |

CONV3 13 x 13 x 256
CONV4 13 x 13 x 256
CONV5 13 x 13 x 256

FCé6 1 x1 x 4096

the first fully connected layer as FC features, and we
take activations from 13 x 13 x 256 feature maps in the
last three convolutional layers as different CONV fea-
tures (as feature maps of first two convolutional layers
are too large, they are not evaluated in this work).

2.2. VLAD encoding

Before applying VLAD encoding on CONV features, we
reshape them into a group of local features. Given a ma-
trice of CONYV features from the I th (I=3,4,5) convoul-
tional layer, M € RN*NxD where the size of each fea-
ture map is N x N, and the number of feature maps is
D, we take activations at each location (i, j) across all fea-
ture maps as a D-dimensional local feature vector f (ll, Y

where 1 < i, j< N, thus obtaining S D-dimensional lo-
cal features, where S = N x N. Finally, we get a feature
group F'={f],f,...ft}.

VLAD encoding was originally proposed for image
retrieval [12]. It can be viewed as a simplified version of
Fisher Vector (FV) [13]. FV uses gaussian mixture model
(GMM) for clustering, while VLAD uses K-means in-
stead. To apply VLAD, a codebook C={c!,....cL} is re-
quired. For this purpose, we randomly select a collec-
tion of images which were not used in the test set. K-
means with k cluster centers was applied to CONV fea-
tures of this subset. For each local feature in the feature
group from an input image, f! (where 1 <s<S), it is as-
sociated with its nearest r cluster centers (We use soft as-
signment and set =5 as it is in [14]). The VLAD descrip-
tor is constructed by accumulating the differences be-
tween each local feature and their corresponding near-
est centers:

vi= L

s:cf{erNN(fS’)

vl = [vll, Vlz, " vi] )

we (fl —cf) (1)

Where wy;, is the Gaussian kernel similarity between
each local CONV feature f! and each of its k nearest
center ci. vi is the sum of residuals between each center
c]’( and all local CONV features which are assigned to
this center. The final VLAD descriptors are normalized
by L2 normalization and signed square rooting. The
dimensionality of VLAD descriptor is D x k. Given
D=256, k=100, the VLAD descriptor of each image is
25,600 dimensional, which makes subsequent analysis
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Fig. 1: An image pair of reflectance image (left) and fluorescence image (right) from the EFC dataset [8].

computationally expensive. Therefore, PCA is used to
reduce the original dimension to 512-dimemsional.

2.3. Images classification

For classification, we extract FC features and CONYV fea-
tures in different layers. Different CONV features are
encoded via VLAD, separately. Combined features are
generated by concatenating multiple features. Image
classification is done by using the linear support vector
machine (SVM).

3. EXPERIMENTS AND ANALYSIS

We perform experiments on the EFC dataset, which
consists of an expert-annotated set of registered fluo-
rescence and reflectance image pairs captured during a
nighttime reef survey in Eilat, Red Sea Israel. The whole
dataset contains 212 image pairs with 200 point annota-
tions as one of the ten dominant taxonomic categories
per image. To evaluate the methods, the whole dataset
of image pairs was divided into two subset. The train-
ing set consists of 142 randomly selected image pairs
with 28,400 point annotations, and the test set contains
70 image pairs with 14000 point annotations.

In the following experiments, we use linear SVM as
implemented in the LIBLINEAR software package [15].
Hyper-parameters are chosen by 5-fold cross-validation
on the training set. The accuracy is computed as the
sum of correctly classified points divided by the total
number of points within each test image. The final ac-
curacy is composed by the mean accuracy of all test im-
ages with the standard error.

In [8], end-to-end training was applied on reflectance
and fluorescence images in the EFC dataset, achieving
87.8% and 85.5% accuracies, respectively. A subsequent
linear SVM classifier was used to aggregate the outputs
of these two networks, obtaining a joint accuracy of
90.5%.

Table 2 reports our results on reflectance images in
the EFC dataset. We achieve a slight increase of 0.5%
using FC6 features, while a significant increase of 1.4%
using CONV3 features over reported results in [8]. The

Table 2: Classification accuracies on reflectance images
in the EFC dataset with a comparison to [8].

| Features | Feature dimension | Accuracy |
CONV3 512 89.2 +0.8%
FCé6 4096 88.3 + 0.8%
CONV3+FC6 4608 89.9 + 0.8%
[8] - 87.8 £1.1%

Table 3: Classification accuracies on fluorescence im-
ages in the EFC dataset with a comparison to [8].

| Features [ Feature dimension | Accuracy |
CONV3 512 86.5 +1.0%
FCé6 4096 85.4 +1.0%
CONV3+FC6 4608 86.7 + 1.0%
[8] - 855+ 1.2%

Table 4: Joint accuracies using information of both re-
flectance and fluorescence images in the EFC dataset
with a comparison to [8].

| Features [ Feature dimension | Accuracy |
CONV3 1024 90.7 £ 0.8%
FCe6 8192 90.4 £+ 0.8%
CONV3+FC6 9216 91.4 + 0.8%
[8] - 90.5 £ 0.8%

combination of FC6 and CONV3 features further im-
prove the accuracies using these two features separately
by 1.6% and 0.7%, achieving the best accuracy at 89.9%.
Furthermore, as shown in Figure 2 (left), classification
recalls for the five dominant corals, i.e. Faviidae, Sty-
lophora, Platygyra, Acropora and Pocillopora, increase by
2%, 2%, 42%, 63% and 25% over reported results in [8],
respectively.

Our results on fluorescence images in Table 3 follow
the similar trend as those on reflectance images. FC6
features have a comparable performance 85.4% to the
85.5% reported in [8]. CONV3 features outperform their
result by a significant margin of 1%. The best accuracy
of our results 86.7% is achieved by concatenating FC6
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Fig. 2: Confusion matrices for our proposed methods using combined FC6 and CONV3 features from reflectance
images (left), fluorescence images (middle) and both images (right).

and CONV3 features. In addition, Figure 2 (middle)
show that, except Faviidae with the same recall 80%, for
Stylophora, Platygyra, Acropora and Pocillopora, their clas-
sification recalls increase 13%, 14%, 46% and 26%, re-
spectively, from those in [8].

Table 4 reports overall classification results by in-
corporating both features from reflectance and fluores-
cence images. CONV3 and FC6 achieve joint accura-
cies of 90.7% and 90.4%, which are comparable to 90.5%
reported in [8]. Furthermore, by aggregating FC6 and
CONV3 features, we achieve the best accuracy of 91.4%.

Experiments are also conducted to compare the
performance of convolutional features from different
layers. As shown in Figure 3, we can see that convo-
lutional features from shallower layers perform better
in all three cases of reflectance, fluorescence and joint
images. Dash lines show that combined with FC6 fea-
tures, performances of different convolutional features
can be enhanced in varying degrees. Additional ex-
periments show that combining multiple convolutional
features with FC features can slightly improve the joint
accuracy but at the cost of larger computational loads.
From the above experiments, we find that the average
accuracy of fluorescence images is much lower than
that of reflectance ones. One possible reason is that,
compared with reflectance coral images, fluorescence
ones have more different distribution with images from
ImageNet, such that CNN features generalize better on
reflectance coral images than fluorescence ones. An-
other reason is the effect of the poor registration quality
on fluorescence coral images.

4. CONCLUSION

In this work, we experiment with features from the
fully connected layer and features from different con-
volutional layers. We investigate and compare their
transferability to coral species in two image modalities.
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Fig. 3: Performance of convolutional features from dif-
ferent layers: solid and dash lines correspond to indi-
vidual convolutional features and those combined with
FC6 features.

VLAD is used to encode dense convolutional features
into a compact feature vector. We find that in the case of
lacking sufficent training data, CNN off-the-shelf fea-
tures outperform training a small network from scratch.
Specifically, low dimensional compact convolutional
features achieve comparable and better results against
fully connected features on reflectance and fluorescence
coral images. We suggest, in visual tasks, deep con-
volutional features should be the first choice for a new
dataset, which is very different from the original dataset
for training deep networks. Moreover, combining fea-
tures from convolutional and fully connected layers can
further improve the overall accuracy.
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