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Abstract—The problem of recovering a signal from its power
spectrum is called phase retrieval. This problem appears in a
variety of scientific applications, such as ultra-short laser pulse
characterization and diffraction imaging. However, the problem
for one-dimensional signals is ill-posed as there is no one–to–
one mapping between a one-dimensional signal and its power
spectrum. In the field of ultra-short laser pulse characterization,
it is common to overcome this ill-posedness by using a technique
called Frequency-Resolved Optical Gating (FROG). In FROG,
the measured data, referred to as FROG trace, is the Fourier
magnitude of the product of the underlying signal with several
translated versions of itself. Therefore, in order to recover a signal
from its FROG trace, one needs to invert a system of phaseless
quartic equations. In this paper, we explore the symmetries and
uniqueness of the FROG mapping. Our main result states that a
signal bandlimited to B is determined uniquely, up to symmetries,
by only 3B FROG measurements.

Index Terms—phase retrieval, phaseless quartic system of
equations, ultra-short laser pulse characterization, FROG

I. INTRODUCTION

In many scientific and engineering applications, one aims
to estimate a signal from its power spectrum, or equivalently,
from its auto-correlation. This problem is called phase re-
trieval and it appears in many applications, such as X-ray
crystallography, speech recognition, blind channel estimation,
alignment and astronomy [1], [2], [3], [4], [5], [6], [7].

Almost all one-dimensional signals cannot be determined
uniquely from their power spectra. Two exceptions are min-
imum phase signals and sparse signals with non-periodic
support [8], [9]. In order to overcome the fundamental ill-
posedness for general signals, one needs to acquire additional
information on the sought signal. For instance, this can be done
by taking measurements with multiple known masks [10],
[11]. As an important special case, the masks can be translated
versions of a single reference mask. In this case, the acquired
data is the phaseless short-time Fourier transform (STFT) of
the sought signal. It has been shown that under different
conditions and scenarios, this information is sufficient for
efficient and stable recovery [12], [13], [14], [15], [16], [17],
[18]. For a recent survey of phase retrieval from a signal
processing point–of–view; see [19].
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search and innovation program under grant agreement No. 646804–ERCCOG–
BNYQ, and from the Israel Science Foundation under Grant no. 335/14.

Here, we consider an extension of the standard phase
retrieval problem in which the measurements are a phase-
less quartic function of the underlying signal. This quartic
problem arises in an ultra-short laser pulse characterization
method, called Frequency-Resolved Optical Gating (FROG).
FROG serves as a simple, commonly-used, technique for full
characterization of ultra-short laser pulses and enjoys good
experimental performance [20]. In order to characterize the
signal, the FROG device measures the Fourier magnitude of
the product of the signal with a translated version of itself,
for several different translations. The acquired data is called
FROG trace. We refer to the inverse problem of recovering
a signal from its FROG trace as the quartic phase retrieval
problem. An illustration of the FROG setup is presented in
Figure I.1.

In this paper we provide sufficient conditions on the num-
ber of samples required to determine a bandlimited signal
uniquely, up to trivial ambiguities, from its FROG trace.
Particularly, we show that it is sufficient to consider only three
translations of the signal to determine almost all bandlimited
signals. If one can also measure the power spectrum of the
signal, then it is sufficient to consider only two translations.
Surprisingly, the required number of measurements is almost
the same as in the STFT phase retrieval problem, although the
FROG method does not require a reference signal.

The outline of this paper is as follows. In Section II we
formulate the FROG problem and discuss its symmetries.
Section III presents our main result. The outline of the proof
is given in Section IV. Section V concludes the paper.

Throughout the paper we use the following notation. We
denote the Fourier transform of a signal z ∈ CN by ẑk =∑N−1
n=0 zne

−2πιkn/N , where ι :=
√
−1. We further use z for

its conjugate. We reserve x ∈ CN to be the underlying signal.
In the sequel, all signals are assumed to be periodic with period
N and all indices should be considered as modulo N , i.e.,
zn = zn+N` for any integer ` ∈ Z.

II. MATHEMATICAL FORMULATION OF THE FROG
PROBLEM AND ITS SYMMETRIES

In this section, we introduce the FROG problem and identify
its symmetries. We note, however, that FROG includes sev-
eral techniques that manipulate the underlying signal and its
delayed versions in several ways [20]. In this paper we focus
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Fig. I.1. Illustration of the SHG FROG technique (courtesy of [21]).

only on the ubiquitous model of Second–Harmonic Generation
(SHG) FROG.

Let us define the bivariate signal

yn,m = xnxn+mL, (II.1)

where L is a fixed positive integer. The FROG trace is equal
to the one-dimensional Fourier magnitude of yn,m for each
fixed m, namely,

|ŷk,m|2 =

∣∣∣∣∣
N−1∑
n=0

xnxn+mLe
−2πιnk/N

∣∣∣∣∣
2

. (II.2)

To ease notation, we assume hereinafter that L divides N .
Our analysis holds for bandlimited signals. Formally, we

define a bandlimited signal as follows:

Definition II.1. We say that x ∈ CN is a B-bandlimited signal
if its Fourier transform x̂ contains N −B consecutive zeros.

The FROG trace (II.2) is a quartic intensity map CN 7→
RN×N

L that has three symmetries. In phase retrieval, they are
commonly referred to as trivial ambiguities. These symmetries
are the set of operations whose action on the signal does
not change the intensity map. In other words, these are
the invariants of the FROG mapping. Indeed, the FROG
trace is invariant under global rotation, global translation and
reflection [21]. While the first symmetry is continuous, the
latter two are discrete. These symmetries are similar to analog
results in phase retrieval, see for instance [22], [19]. The
next proposition summarizes the symmetries and shows that
for bandlimited signals—which are the main interest of this
paper—the global translation ambiguity is also continuous.

Proposition II.2 ([23]). Let x ∈ CN be the underlying signal
and let x̂ ∈ CN be its Fourier transform. Let |ŷk,m|2 be the
FROG trace of x as defined in (II.2) for some fixed L. Then,
the following signals have the same FROG trace as x:

1) the rotated signal xeιψ for some ψ ∈ R;
2) the translated signal x` obeying x`n = xn−` for some

` ∈ Z (equivalently, a signal with Fourier transform x̂`

obeying x̂`k = x̂ke
−2πι`k/N for some ` ∈ Z);

3) the reflected signal x̃ obeying x̃n = x−n.
For B-bandlimited signals as in Definition II.1 with B ≤ N/2,
the translation ambiguity is continuous. Namely, any signal
with a Fourier transform obeying x̂ψk = x̂ke

ιψk for some ψ ∈
R has the same FROG trace as x.

Figure II.1 illustrates a 5-bandlimited real signal of
length N = 11 with Fourier transform given by x̂ =
(1, ι,−ι, 0, 0, 0, 0, 0, 0, ι,−ι)T . The second signal is x shifted
by three entries. A third signal is a “translated” version of x
by 1.5 entries. Namely, the kth entry of its Fourier transform
is given by x̂ke

−2πι(1.5)k/N . Clearly, the third signal is not
equal to x, up to global translation. Nonetheless, since x is
bandlimited, all three signals have the same FROG trace.

1 2 3 4 5 6 7 8 9 10 11
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0.4

signal
shifted by 3 entries
shifted by 1.5 entries

Fig. II.1. This figure presents three 5-bandlimited signals. Two of them are
shifted versions of each other. The third one is “shifted” by 1.5 entries, namely,
the kth entry of its Fourier transform is modulated by e−2πι(1.5)k/N . All
signals have the same FROG trace (II.2) (courtesy of [19]).

From an algebraic perspective, the symmetries of the FROG
trace form a group. Particularly, the FROG intensity map
CN → RN×N/L is invariant under the action of the group
G = S1 × µN n µ2, where S1 corresponds to the continuous
rotation ambiguity on the circle and n denotes a semi-direct
product. Here, µ2 and µN correspond to the discrete reflection
and translation symmetries, respectively. Observe that we use a
semi-direct product for the last symmetry since µ2 and µN do
not commute; if one reflects the signal and then translates it, it
is not the same as translating and then reflecting. Interestingly,
µN n µ2 is the dihedral group D2N of symmetries of the
regular N-gon. If we consider bandlimited signals, then the
translation ambiguity is continuous and the FROG trace is
invariant under the action of the group G = S1 × S1 n µ2.

III. MAIN RESULT

We are now ready to present the main result of this paper.
Our result states that almost any B-bandlimited signal is
determined by its FROG trace, up to trivial ambiguities, as
long as L ≤ N/4 and B ≤ N/2. Particularly, we show
that we need to take into account only three translations.
Consequently, 3B measurements are enough to determine
the underlying signal. For instance, if L = N/4 then the
measurements corresponding to m = 0, 1, 2 determine the
signal. The bandlimited assumption is met in standard ultra-
short pulse characterization experiments [24]. If in addition we
have access to the signal’s power spectrum, then it suffices to
choose L ≤ N/3. In this case, one may consider only two
translations. For example, if L = N/3, then one can choose
m = 0, 1. Indeed, the power spectrum of the sought pulse
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is often available, or it can be measured by a spectrometer,
which is integrated into a typical FROG device.

Theorem III.1 ([23]). Let x ∈ CN be a B-bandlimited signal
as defined in Definition II.1 for some B ≤ N/2. If N/L ≥
4, then generic signals are determined uniquely from their
FROG trace as in (II.2), modulo the trivial ambiguities of
Proposition II.2, from 3B measurements. If in addition we
have access to the signal’s power spectrum and N/L ≥ 3,
then 2B measurements are sufficient.

The notion of generic signal that appears in Theorem III.1
means that the set of signals which cannot be uniquely deter-
mined, up to trivial ambiguities, is contained in the zero set of
a non-zero polynomial. This implies that we can reconstruct
almost all signals under the stated conditions.

This result significantly improves upon earlier work on the
uniqueness of the FROG method. In [25], it was shown that a
continuous signal is determined by its full continuous FROG
trace and its continuous power spectrum. The uniqueness of
the discrete case, as the problem often appears in practice,
was first considered in [21]. It was proven that a discrete
bandlimited signal is determined from its entire FROG trace
(i.e., L = 1) and its power spectrum. Our result requires only
2B FROG measurements if the signal’s power spectrum is
available, where B is the signal’s bandlimit. Furthermore, this
is the first result showing that the FROG trace is sufficient to
determine the signal without the power spectrum information.

It is interesting to view our results in the broader per-
spective of phaseless systems of equations. In [26], it was
shown that 4N − 4 quadratic equations arising from random
frame measurements are sufficient to uniquely determine all
signals. Our result requires the number of measurements to
be only three times the bandwidth of the signal. Nonetheless,
it holds “only” for almost all signals. Another related setup
are phaseless STFT measurements. This case resembles the
FROG setup, where a known reference window replaces the
unknown delayed signal. Several works derived uniqueness
results for this case under different conditions [12], [14], [15],
[16][19, Section 3.4]. In [13], it was shown that it is sufficient
to set L < N/2 to determine almost all non-vanishing signals.
Comparing to Theorem III.1, we conclude that the FROG case
is not significantly harder than the phaseless STFT setup.

Before moving forward to outline the proof of Theo-
rem III.1, we mention that several algorithms exist to estimate
a signal from its FROG trace [27], [28]. One way to try
estimating the signal is by minimizing a least-squares objective

min
z∈CN

1

2

N−1∑
k=0

N/L−1∑
m=0

|ŷk,m|2 −
∣∣∣∣∣
N−1∑
n=0

znzn+mLe
−2πιnk/N

∣∣∣∣∣
2
2

.

(III.1)
This problem is non-convex (a polynomial of degree 8) and
empirical evidence suggests that it suffers from multiple local
minima [23]. One popular iterative algorithm is the Principal
Components Generalized Projections (PCGP) [29]. The PCGP
algorithm alternates between imposing the known intensities

(the measured data) and the non-linear relation (II.1). The
latter step is performed by employing principal components
analysis (PCA) on a data matrix constructed from the previous
signal’s estimation.

IV. OUTLINE OF THE PROOF OF THEOREM III.1

In this section we present the outline of the proof of
Theorem III.1. The detailed proof is given in [23].

We begin the proof by reformulating the measurement
model to a more convenient structure. Particularly, it can be
shown that

ŷk,m =
1

N

N−1∑
`=0

x̂`x̂k−`ω
`m, (IV.1)

where
ω := e2πι/r, r := N/L, (IV.2)

and we assume that N/L is an integer. Equation (IV.1)
implies that, for each fixed k, ŷk,m provides r = N/L
samples from the (inverse) Fourier transform of x̂`x̂k−`. Note
that ŷk,−m =

∑N−1
`=0 x̂`x̂k−`ω

`m. Because of the reflection
ambiguity in Proposition II.2, it implies that the FROG trace
is invariant to sign flip of m. For instance, for r = 3, the
equations for m = 1 and m = 2 are the same since m = 2 is
equivalent to m = −1.

To ease notation, we assume that N is even, that x̂k 6= 0 for
k = 0, . . . , N/2− 1, and that x̂k = 0 for k = N/2, . . . , N −
1. If the signal’s non-zero Fourier coefficients are not in the
interval 0 . . . , N/2 − 1, then we can cyclically reindex the
signal without affecting the proof. If N is odd, one should
replace N/2 by bN/2c everywhere in the sequel.

Considering (IV.1), our bandlimit assumption forms a “pyra-
mid” structure. Here, each row represents fixed k and varying
` of x̂`x̂k−`:

x̂20, 0, . . . , 0
x̂0x̂1, x̂1x̂0, 0, . . . , 0

x̂0x̂2, x̂
2
1, x̂2x̂0, . . . , 0 . . .

...
x̂N/2−1x̂0, x̂N/2−2x̂1, . . . , x̂N/2−1x̂0, 0, . . . , 0
0, x̂1x̂N/2−1, x̂2x̂N/2−2, . . . , x̂N/2−1x̂1, 0, . . . , 0

...
0, 0, . . . x̂N/2−1x̂N/2−1, . . . , 0, . . . , 0.

(IV.3)

Then, ŷk,m as in (IV.1) is a subsample of the Fourier transform
of each one of the pyramid’s rows. It also implies that the
FROG trace is a subsample of the power spectrum taken along
the rows.

From the first row of (IV.3), we see that

|ŷ0,0| =
1

N
|x̂20|.

Because of the rotation ambiguity, we set x̂0 to be real and,
without loss of generality, normalize it so that x̂0 = 1. From
the second row of (IV.3), we conclude that

|ŷ1,0| =
1

N
|x̂0x̂1 + x̂1x̂0| =

2

N
|x̂1|.
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Therefore, we can determine |x̂1|. Because the translation sym-
metry for bandlimited signals, as presented in Proposition II.2,
is continuous, we set arbitrarily x̂1 = |x̂1|. Note that this is
not true for general signals for which the translation symmetry
is discrete.

In order to proceed, we present a key lemma which is
the main pillar of the proof. The lemma ensures that given
three distinct equations, quadratic phaseless systems of the
form (IV.4) have no unique solution in general. The proof of
the lemma is provided in [23].

Lemma IV.1. Consider the system of equations

|z + v1| = n1, |z + v2| = n2, |z + v3| = n3, (IV.4)

for non-negative scalars n1, n2, n3 ∈ RN .
1) Let v1, v2, v3 ∈ CN be distinct and suppose that the

imaginary part of the ratio v1−v2
v1−v3 is not zero. If the

system (IV.4) has a solution, then it is unique. Moreover,
if n1, n2, n3 are fixed for generic v1, v2, v3 ∈ CN , then
the system will have no solution.

2) Let v1, v2, v3 ∈ RN . If z = a + ιb is a solution, then
z = a − ιb is a solution as well. Hence, if the system
has a solution, then it has two solutions. Moreover, if
n1, n2, n3 are fixed for generic v1, v2, v3 ∈ RN , then
the system will have no solution.

Lemma IV.1 can be extended to systems of s ≥ 3 equations,
namely,

|z + v1| = n1, . . . , |z + vs| = ns.

If one of the ratios v1−vp
v1−vq for p, q = 2, . . . , s, p 6= q, is not

real, then there is at most one solution to the system.
Based on the second part of Lemma IV.1, one can show that

x̂2 is determined up to the reflection symmetry. More involved
arguments, based on the first part of Lemma IV.1, show that x̂3
and x̂4 are also determined uniquely; see [23] for the technical
details.

The final step of the proof is to show that given
x̂0, x̂1, . . . , x̂k for some k ≥ 4, we can determine x̂k+1 up
to symmetries. Using (IV.3), for an even k = 2s, we get the
system of equations for m = 0, . . . , r − 1,∣∣∣∣ ŷk+1,m

1 + ωm(k+1)

∣∣∣∣ =
1

N

∣∣∣∣z + ωm

1 + ωm(k+1)
x̂1x̂k + · · ·+

ωms

1 + ωm(k+1)
x̂sx̂s+1

∣∣∣∣ ,
(IV.5)

where we omit the values of m for which ωm(k+1) = −1.
Under the assumptions of Theorem III.1, we get at least
three distinct equations. Therefore, applying Lemma IV.1
implies directly that x̂k+1 is determined uniquely. For an odd
k = 2s + 1, we get a similar system of equations. When
r = 3, the system provides only two distinct equations. If in
addition we assume the knowledge of |x̂|, then we have an
additional third equation |z| = |x̂k+1| and therefore we can
invoke Lemma IV.1. This concludes the proof.

V. CONCLUSION AND PERSPECTIVE

The problem of phase retrieval arises naturally in the field of
ultra-short laser pulse characterization. In order to overcome
the ill-posedness of the problem, it is common to use the
FROG method. Recovering the signal from its FROG trace
involves inverting a system of phaseless quartic equations. In
this manner, the FROG problem differs significantly from stan-
dard phase retrieval problems that involve quadratic equations.

In this work, we analyzed the uniqueness of the FROG
method. We have shown that it is sufficient to take only
3B FROG measurements in order to determine a generic B-
bandlimited signal uniquely, up to symmetries. If the power
spectrum of the sought signal is also available, then 2B
measurements suffice.

The FROG model considered in this paper has a natural
extension, called blind FROG. In blind FROG, we aim to
characterize two signals simultaneously. Particularly, for two
signals u, v ∈ CN , the blind FROG trace is given by [20],
[30]

|ŷk,m|2 =

∣∣∣∣∣
N−1∑
n=0

unvn+mLe
−2πιnk/N

∣∣∣∣∣
2

. (V.1)

The goal is then to estimate both u and v simultaneously from
their phaseless measurements. Interestingly, blind FROG has
an additional continuous symmetry that does not appear in
FROG. Specifically, for any φ ∈ [0, 2π), the blind FROG trace
is invariant under the mapping

(un, vn)→ (une
ιnφ, vne

−ιnφ), n = 0, . . . , N − 1.

A previous paper showed that a pair of signals can be
determined uniquely if the power spectrum of each signal is
known and L = 1 [21]. However, based on the methodology
presented in this paper, we believe that this result can be
greatly improved.

As aforementioned in Section III, there exist a variety
of algorithms for estimating a signal from its FROG trace.
However, the problem is inherently non-convex and therefore
it is not clear under what conditions these algorithms provide a
reliable estimation of the sought signal, even in the absence of
noise. In recent years, several non-convex algorithms for phase
retrieval were proposed and analyzed in a variety of settings,
see for instance [12], [31], [32], [33], [34], [35]. An analysis
of FROG algorithms is a desired future research direction.
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