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ABSTRACT

Single image super-resolution (SR) via deep learning has re-
cently gained significant attention in the literature. Convolu-
tional neural networks (CNNs) are typically learned to rep-
resent the mapping between low-resolution (LR) and high-
resolution (HR) images/patches with the help of training ex-
amples. Most existing deep networks for SR produce high
quality results when training data is abundant. However, their
performance degrades sharply when training is limited. We
propose to regularize deep structures with prior knowledge
about the images so that they can capture more structural in-
formation from the same limited data. In particular, we in-
corporate in a tractable fashion within the CNN framework,
natural image priors which have shown to have much recent
success in imaging and vision inverse problems. Experimen-
tal results show that the proposed deep network with natu-
ral image priors is particularly effective in training starved
regimes.

1. INTRODUCTION

A popular branch of image reconstruction methods is image
Super-Resolution (SR), which focuses on the enhancement of
image resolution. Single image SR methods consider gen-
erating the HR image only based on a single low-resolution
image as input. Classically, the solution to this problem is
based on example-based methods exploiting nearest neigh-
bor estimations [1, 2]. In addition, many machine learning
techniques have been developed attempting to capture the co-
occurrence of low-resolution (LR) and high-resolution (HR)
image patches [3,4]. Generally, SR task is a severely ill-posed
problem due to information loss and hence the solution is not
unique. The use of prior information about the expected HR
image has been suggested to yield realistic and robust solu-
tions in traditional SR set-ups [5–8].

Sparsity-based methods have in particular been widely ap-
plied to the single image SR problem. Essentially in these
techniques, examples of corresponding HR and LR patches
are collected as columns of two dictionaries (matrices). A
sparse code is obtained for LR patches via its correspond-
ing dictionary but applied to the HR dictionary to yield a HR
image patch [9]. Other sparsity-based methods include sin-
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gle image scale-up [10], Anchored Neighborhood Regression
(ANR) [11, 12] and color SR [13].

Deep learning based SR has been of recent interest and
has been shown to improve results over sparsity based meth-
ods which were previously considered state of the art for SR.
Deep learning promotes the design of large-scale networks
[14–16] for a variety of problems including SR. Invariably, a
network, e.g. a deep convolutional neural network (CNN) or
auto-encoder is trained to learn the relationship between LR
and HR image patches. Among the first deep learning based
super-resolution methods, Dong et al. [17] trained a deep con-
volution neural network (SRCNN) to accomplish the image
SR task. Among other such methods we can name coupled
auto-encoders [18], Wavelet SR [19], cascaded networks [20],
Deep Joint Super Resolution (DJSR) [21], and self-example
networks [22]. Recently, residual net [23] has shown great
ability at reducing training time and faster convergence rate.
Based on this idea, a Very Deep Super-Resolution (VDSR)
[24] method is proposed which emphasizes on reconstructing
the residuals between LR and HR images.

Motivation: The performance improvements in the sense of
image quality for SR deep networks have been facilitated by
abundant training, which means that thousands or millions of
training LR and HR pairs are available. We investigate the
performance of existing SR deep structures in low training
regime and show that their performance drops significantly.
Note that the assumption of limited availability of training
data is very reasonable in many image processing and vision
applications, namely the enhancement of resolution of med-
ical images such as MRI and CT. We propose a remedy for
this performance degradation by developing a Deep network
with Natural Image Priors (DNIP) for the SR task.

The main contributions of this paper are the follow-
ing: 1) we propose to incorporate Natural Image Priors
(NIP) [25, 26] into the learning of a CNN for the SR task,
2.) a regularization term is developed which involves making
suitable approximations to the prior and results in a penalty
function that is smooth and differentiable and hence usable
with backpropogation schemes 3) experimental validation
reveals that DNIP outperforms competing methods particu-
larly in the low-training regime even with a simpler network
structure viz. smaller number of layers.
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2. INTEGRATING NATURAL IMAGE PRIORS IN
DEEP SR NETWORKS

Natural images have many unique statistical properties [27,
28]. One of the most well known such properties is that they
exhibit heavy-tailed distribution when applying derivative fil-
ters onto them. Intuitively, natural images are locally smooth;
therefore, local differences will be small and the distribution
will decrease faster than the Gaussian. On the other hand, nat-
ural images have many structural details such as edges, where
the derivative response can be large and it contributes to the
heavier tails than the Gaussian distribution. This prior knowl-
edge has been successfully applied in a wide range of appli-
cations, including image denoising [28], deblurring [29] and
super-resolution with sparse regression models [25].

The heavy-tail characteristics of images can be captured
using the following probability distribution as prior: P(yyy) ∝

exp
(
− ‖∇yyy‖αα

η2

)
where ∇yyy represents the gradient of the image

yyy and the norm ‖yyy‖α
α is defined as ‖yyy‖α

α = ∑i |yi|α. The pa-
rameter α determines the family of priors being applied. For
example, the most classical image prior is the Gaussian model
with α = 2. It is widely used due to its simplicity; however, it
usually fails to produce satisfying solutions as it smooth-out
the image. To overcome this problem and preserve the edge
structure, Laplacian prior is used which has been proved to
preserve image discontinuities better. Laplacian priors are re-
lated to `1-norm regularization with α = 1 which promote the
sparsity in the solution. Such priors can preserve edges in the
image; however, resulting images look piecewise linear. This
is due to the fact that natural images follow a distribution with
heavier tails than Laplacian or Gaussian. Therefore, hyper-
Laplacian distribution is introduced for the edges [30,31] with
α < 1. In this paper, we take the image priors as suggested by
Kim et al. [25, 26] and improve upon them for SR task.

P(yhyhyh|ylylyl) =
1
C ∏
{i, j}
{s,t}∈
N (i, j)

exp
[
−
(
|yh(i, j)− yh(s, t)|

σN

)α]

︸ ︷︷ ︸
prefer strong edges (edge based prior)

∏
{i, j}

exp

−( |T(yh(i, j)
)
− yl(i, j)|

σR

)2


︸ ︷︷ ︸
Reconstruction is faithful to LR image

(1)

The above prior tries to capture natural image characteristics
and the reconstruction model in one framework. yhyhyh repre-
sents the estimated high resolution image and ylylyl denotes the
corresponding low resolution image and N (i, j) represents a
neighborhood of pixels at location (i, j). For a given image,
the second product term is a reconstruction constraint and en-
sures that when the same downsampling kernel T (blurring
and sub-sampling) is applied on the super resolution result
(yhyhyh), it is prevented from flowing far away from the input low
resolution image ylylyl . While the first product term (NIP term)
tends to penalize pixel value differences in a neighborhood
of each pixel (i, j). Subsequently, this distribution prefers a
strong edge rather than a set of small edges (such as ringing
artifacts) and can be used to resolve the problem of smooth
edges.

Incorporating NIP in a CNN Framework: To adapt the
NIP prior and the reconstruction constraint to SR in a deep
learning-based framework, we propose to revise the prior dis-
tribution in (1). This is done to ensure that the reconstruction
constraint is penalizing the difference between the estimated
HR image (yyyh) and the ground truth HR image (yyyg). We then
rewrite the NIP as follows:

P(yhyhyh|ygygyg) =
1
C ∏
{i, j}
{s,t}∈
N (i, j)

exp
[
−
(
|yh(i, j)− yh(s, t)|

σN

)α]
∏
{i, j}

exp

[
−
(
|yh(i, j)− yg(i, j)|

σR

)2
]

︸ ︷︷ ︸
Compares output with ground truth HR image

(2)

Also, note that in the revised NIP prior no downsam-
pling/blurring kernel (T) is used. In our version of NIP prior,
which is specific to deep SR, we want the inferred super-
resolution result to be statistically close to the ground truth
image. The NIP prior provides a MAP framework where we
can take the negative log-likelihood of the posterior and find
its minimum. Essentially, maximizing the posterior using
NIP priors leads to the following minimization problem:

yhyhyh = argmin
yhyhyh

σ2
R

σα
N

∑
{i, j}

{s,t}∈N (i, j)

|yh(i, j)− yh(s, t)|α + ∑
{i, j}
|yh(i, j)− yg(i, j)|2 (3)

Rewriting the MAP estimation in the form above helps us in-
terpret the cost function often used for image super-resolution
and also implement the new NIP cost function in an efficient
manner using convolutions. The second sum in (3) is essen-
tially summing up pixel level square differences between the
estimated HR image and the HR ground truth image. This can
be easily captured by ‖yhyhyh−ygygyg‖2

F . It is noteworthy to mention
that this is the most commonly used cost function for image
SR in the deep learning frameworks On the other hand, the
first term in (3) is a local error constraint on pixel values and
summed for all the pixels in the images. If we assume a sim-
ple neighbourhood N (i, j) to be the 8-neighbourhood vicin-
ity around any pixel (i, j), the NIP prior as defined above can
be written as summation over 8 filtered images that are also
passed through a special non-linear activation function. Since
the aforementioned filters (FFFk) are simple difference filters
and linear, they can be implemented with eight convolution
filters (shown in Fig. 1) and followed by a non-linear activa-
tion function i.e. | · |α. This is more efficient for implementa-
tion purposes in the deep leaning structures using CNNs. The
overall cost function can be rewritten as:

yyyh = argmin
yhyhyh

σ2
R

σα
N

(
8

∑
k=1
‖yhyhyh ∗FkFkFk‖α

α

)
+‖yhyhyh−ygygyg‖2

F (4)

To optimize a deep network using the cost function in (4),
we need to make sure the cost function is differentiable so the
error can propagate back through the network using a back-
propagation approach. However, for α < 1, the cost func-
tion in (4) is not differentiable at zero since it has an infinite
slope. To mitigate this problem, we propose to approximate
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Fig. 1. 8 convolution filters used to implement the NIP loss

Fig. 2. The network structure for imposing NIP priors

the α-norm function with something that has a large but fi-
nite derivative at zero. In particular, we approximate |x|α for
α = 0.1 with 0.1log

(
(e10−1)|x|+1

)
.

Network Structure: The proposed network structure is
shown in Fig. 2, which consists of an SR network for gen-
erating the super-resolution result and also a few additional
convolutional layers to impose the NIP prior. The “SR Net-
work” in Fig. 2 can be chosen to be any network specific for
SR task and here we pick variants of the Very Deep Super
Resolution (VDSR) [24] as one of the state-of-the-art meth-
ods for validating our idea. However, this idea can be applied
to any other SR network such as SRCNN, etc. VDSR is a
residual network with N convolutional layers that takes the
input LR image as input and generates the output residuals
that needed to be added to the input image in order to gen-
erate the HR output image. Each layer has 64 filters of size
3×3× c, where c is the number of required channels.

The output of the “SR Network” goes into another layer of
convolution with 8 non-learnable filters of size 3×3 that are
illustrated in Fig. 1 and passed through the nonlinear equiva-
lent of α-norm to form a data cube with 8 channels. The out-
put cube is summed across channels and then across spatial
dimensions to provide the NIP part of the loss function in (4).
Although the filters in the last layer are not learnable and are
fixed, the error that is caused by NIP layers propagates back
to the main SR network and hence the SR network weights
are optimized with the knowledge of the NIP. This network
is equipped with image priors so that it can capture image
statistics from the training data and generate output images
with respect to the natural image prior. Especially, in scenar-
ios where training data is limited and generic deep SR net-
works fail to provide satisfying results for super-resolution,
our DNIP is capable of recovering HR images using the prior
knowledge that is incorporated into the network.

3. EXPERIMENTAL RESULTS

In this section, we provide the experimental results and pro-
cedures corresponding to our DNIP method. We evaluate our
method in high training and low training scenarios to show
the benefits of regularizing deep networks with image priors.

3.1. Dataset Preparation and Training Procedure

For training dataset, we use the 291 images from [32] which
contains natural images. Data Augmentation, including flip-
ping, rotation, and scaling, was performed. To train the net-
work, the HR training images are scaled down and up by
bicubic interpolation with a scaling factor of 3 from which
140,000+ patches of size 41× 41 pixels are extracted. For
the test scenario, we use the ‘set 14’ [10] dataset for a scaling
factor of 3. The training procedure of DNIP is chosen to be
similar to VDSR [24]. Additional convolutional layers with
non-learnable (fixed) weights are also added to compute the
loss function corresponding to NIP. Training uses batches of
size 64 and momentum and weight decay parameters are set
to 0.9 and 0.0001. Also, gradient clipping is used as proposed
by [24] to prevent gradients from exploding. We train all ex-
periments over 300 epochs over all training data (no matter
how much training data is used). The learning rate was ini-
tially set to 0.1 and then decreased by a factor of 10 at epochs
60 and 140. Similar to other recent SR methods, our frame-
work applies bicubic interpolation to color components and
only the luminance channel is fed to the deep network.

3.2. DNIP with Variable Training and Variable Depth

We compare the performance of DNIP and VDSR with N =
20,12,5 layers and with varying amount of training data. We
show that when generous training is available (using 100%
of available training) both methods show comparable perfor-
mance. Fig. 3 shows the the output of VDSR-20 and DNIP-
20 (both with N = 20 layers) when using 100% of training
patches. Numbers in parenthesis denote the PSNR and SSIM
values, respectively. Also, the last two columns of Table 1
shows the same but averaged over Set-14. Additionally, Ta-
ble 1 also reports results with different number of layers in
the network varying from 5 to 20 with varying amount of
training. It may be inferred that despite different networks’
depths, there is no significant difference between the two net-
works when using 100% of training data. However, when we
decrease the amount of training data, the benefits of DNIP are
readily apparent.

Fig. 4 shows the comparison of VDSR-20 and DNIP-20
networks when trained only with 4% of training patches.
Clearly, DNIP-20 shows a significant boost in terms of PSNR
and SSIM for both “ppt3” and “monarch” images. Also,
much less artifacts around edges are seen in the result of
DNIP which now uses the prior knowledge compared to
VDSR network which does not do so.
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Table 1. Quantitative Results average over Set 14 for variable amount of training and network depth (N)
Training % 1% 4% 20% 100%

Net type PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
VDSR-20 27.0168 0.7723 28.4169 0.8042 29.1632 0.8193 29.7396 0.8301
DNIP-20 27.1448 0.7477 28.4622 0.8048 29.1665 0.8191 29.7342 0.8264
VDSR-12 27.5787 0.7881 28.4482 0.8032 29.164 0.8191 29.6691 0.8284
DNIP-12 27.6454 0.7873 28.4828 0.8038 29.1757 0.8189 29.6741 0.8282
VDSR-5 27.6952 0.7917 28.0328 0.7947 28.8706 0.8118 29.4195 0.8233
DNIP-5 27.7766 0.7919 28.1107 0.7945 28.9363 0.8107 29.4053 0.8222

Fig. 3. VDSR-20 and DNIP-20 with abundant training.

Fig. 4. DNIP with incorporated priors boost the SR results.

We also carried out another experiment which examines
the effect of the number of layers on the performance of DNIP
and exploiting prior knowledge. We show that in the limited
training scenarios, regardless of the number of layers in each
network, regularizing our DNIP network with prior knowl-
edge results in better performance than VDSR. Essentially,
when less training data is available the more helpful are the
incorporated priors in our DNIP network. For instance, Fig. 5
shows when the available training data is decreasing, the per-
formance of both VDSR-5 and DNIP-5 (red square markers)
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Fig. 5. PSNR values with different amount (%) of training
data for DNIP and VDSR with various number of layers.

decays; however, DNIP exhibits a more graceful decay.
An interesting observation here is that as the amount of

training data decreases, networks with fewer number of layers
begin to show better performance compared to deeper struc-
tures. This shows for limited data the shallower networks
are more capable of capturing statistical and geometrical
structures in the training process. This observation is aligned
with the fact that deeper networks need more training data
for learning and shallower networks with less parameters can
be learned with less training data. However, both cases can
benefit from incorporating prior knowledge.

4. CONCLUSION

In this paper, we analyze deep network structures for the SR
task in the absence of abundant training data and showed that
their performance significantly drops under such conditions.
To overcome this problem, we develop a novel deep network
that is regularized with prior knowledge of images (natural
image priors). We propose suitable approximations to the
prior so that it results in a regularization term that fits with ex-
isting backpropogation schemes and hence enables tractable
learning of a deep CNN with image priors (DNIP). Experi-
ments confirm that our proposed DNIP is capable of captur-
ing more structural image details from limited training data.
More elaborate priors may be investigated in future work and
from an experimental viewpoint the impact of incorporating
priors on the complexity of the network structure (e.g. num-
ber of layers) may be investigated in greater detail.
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