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ABSTRACT

Convolutional neural networks (CNNs) have been widely
used in computer vision community. Single image super-
resolution (SISR) is a classic computer vision problem, which
aims to output a high-resolution image from a low-resolution
one. In recent years, CNNs-based SISR methods emerged
and achieved a performance leap. In this paper, we present
a highly accurate deep CNNs model for SISR. Inspired by
the ideas in highway networks, we propose a highway unit
and cascade highway units to ensemble our model. Further-
more, we employ structural similarity index (SSIM) as a part
of loss function to enhance the accuracy of trained deep CNNs
model. Experimental results show that our proposed model
outperforms other state-of-the-art methods.

Index Terms— Super-resolution, Convolutional neural
networks, Deep learning, Highway networks

1. INTRODUCTION

Single image super-resolution (SISR), which aims to recon-
struct a high-resolution (HR) image from a low-resolution
(LR) one, is a classic computer vision problem. HR images
have higher pixel density, more detailed information and del-
icate picture quality. In order to obtain HR images, the most
direct approach is to use HR camera. However, in practical
applications, due to the production process and engineering
costs, many occasions do not use HR camera for image sig-
nal acquisition. Therefore, the adoption of super-resolution
(SR) technology to obtain HR images from LR images has a
certain application requirements.

Many SR methods have been proposed in computer vi-
sion community. Early methods such as bicubic interpolation
and Lanczos resampling [1] try to reconstruct a HR image
when only using the information of a LR one. These meth-
ods can not solve the problem well because SR is an ill-posed
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Fig. 1. Highway unit. We cascade highway units to form our
deep CNNs model. The highway unit consists of a dropout
layer, two ReLU layers, four convolutional layers, a sigmoid
layer, and an union layer. The union layer outputs the combi-
nation of input signal x, output of lower channel y, and output
of upper channel g.

problem due to each pixel in LR has multiple solutions when
mapping on pixels in HR images. Such a problem should use
strong prior to constrain the solution space. Recent state-of-
the-art methods mostly adopt the example-based [2] strategy
for learning the strong prior knowledge.

In recent years, with the success of convolutional neu-
ral networks (CNNs) [3] in the computer vision community,
CNNs-based SR methods [4, 5, 6, 7] have emerged. These
methods achieved performance leaps compared to previous
methods. Among them, SRCNN [4] and VDSR [5] are typ-
ical methods. SRCNN proved that CNNs can be used to
learn a mapping between LR and HR images and achieved
an end-to-end method, which is trained directly from image
patches without any extracted features. In [5], Kim et al. pro-
posed a very deep CNNs model for SISR (VDSR) inspired
by VGG-net [8] used for ImageNet [9] classification. VDSR
demonstrated that deep CNNs model can achieve better per-
formances.

According to the experiments conducted in [10], although
SRCNN [4] and VDSR [5] successfully applied deep learn-
ing techniques to solve the SR problem and achieved state-
of-the-art performance, they suffer from inaccuracy problem
of mean squared error (MSE), which is taken as loss function.
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Fig. 2. Our Network Structure. We cascade highway units to obtain our network structure. HR images are predicted from LR
images through our deep CNNs model. The output HR image is obtained by combining the input LR image q and the predicted
residual image r.

Moreover, the performance of CNNs-based methods can be
further improved by designing more appropriate models.

In this paper, in order to improve the performance of
CNNs-based SR methods, we propose a deep CNNs model
for SISR. Inspired by highway networks [11], we propose a
highway unit and cascade highway units to form our deep
CNNs model. We name the proposed model as Highway Net-
works Super Resolution (HNSR). The input of the proposed
HNSR consists of vertical gradient map, horizontal gradient
map and luminance map. Different from other CNNs-based
SR methods, we employ structural similarity index (SSIM)
[12] as a part of loss function. The performance of HNSR is
verified by benchmark datasets. Experimental results show
that HNSR outperforms other CNNs-based SR methods and
achieves state-of-the-art performance.

The main contributions of our work are: i) We proposed
a highway unit (Shown in Figure 1) based on the ideas in
highway networks [11] and cascade highway units to form
our deep CNNs model; ii) In order to enhance the accuracy
of proposed HNSR, we employed SSIM [12] as a part of loss
function. With the aid of SSIM, the proposed HNSR is able to
achieve better performance than other CNNs-based SR meth-
ods.

The rest of the paper is organized as follows. We describe
our proposed model in Section 2. In Section 3, we present
experimental results. Finally, we draw conclusions in Section
4.

2. PROPOSED METHOD

2.1. Proposed Network

For the SISR, we proposed a highway unit inspired by high-
way networks in [11] and cascade highway units to form our
network structure. In Figure 1, we demonstrated the struc-
ture of proposed highway unit. The input signal x passes
through the upper and lower two channels. The lower chan-
nel includes three convolutional layers, each of which has 32

kernels size of 5 × 5, a dropout [14] layer, and two Rectified
Linear Unit (ReLU) [15] layers. The upper channel includes a
convolutional layer, which also have 32 kernels size of 5 × 5
, and a sigmoid layer. As shown in Figure 1, the output of
the upper channel g, the input signal x, and the output of the
lower channel y will pass through a union layer. We define
the output of the union layer as:

Output = g × y + (1− g)× x, (1)

where g denotes the output of upper channel; x denotes
the input signal; and y denotes the output of lower channel.

The framework of our proposed network is demonstrated
in Figure 2. For an input image, we use bicubic interpolation
to upsample it to target resolution and obtain LR image q. In
order to faster convergence, our network preprocesses q and
obtains three images: horizontal gradient map, vertical gra-
dient map, and luminance map. Then, the proposed network
combines these three maps to create a new input signal. The
combined new signal passes through several highway units to
obtain a residual image r. Finally, the output HR image is
obtained by combining the input LR image q and predicted
residual image r.

2.2. Loss Function

We designed a new loss function for CNNs-based SISR. Pre-
vious CNNs-based methods [4, 5, 6, 7] employed MSE as
loss function. Although MSE can well predict the loss be-
tween ground truth and predicted image, it has limitations. In
some cases [12], MSE fails due to not considering structure
similarity of the compared images . SSIM [12] is proposed to
address the limitations of previous methods such as MSE or
PSNR. SSIM considers three important factors: luminance,
contrast, and structure similarity. By taking structure similar-
ity into consideration, SSIM performes better than MSE or
PSNR.

The Proposed new loss function is a weighted sum of
MSE and SSIM. The new loss function is defined as,
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Table 1. Average PSNR\SSIM on Set5, Set14, B100, and Urban100.

Benchmark
Bicubic SRCNN [4] IA [13] VDSR [5] Small HNSR HNSR-SSIM Large HNSR

PSNR\SSIM PSNR\SSIM PSNR\SSIM PSNR\SSIM PSNR\SSIM PSNR\SSIM PSNR\SSIM

Set5

2 33.66\0.9299 36.66\0.9542 37.37\0.9582 37.53\0.9587 37.64\0.9594 37.38\0.9601 37.80\0.9597
3 30.39\0.8682 32.75\0.9090 33.43\0.9195 33.66\0.9213 33.76\0.9223 33.25\0.9242 34.03\0.9248
4 28.42\0.8104 30.48\0.8628 31.05\0.8781 31.35\0.8838 31.32\0.8824 30.47\0.8864 31.65\0.8887

Set14

2 30.24\0.8688 32.42\0.9063 32.83\0.9109 33.03\0.9124 33.12\0.9134 32.84\0.9166 33.40\0.9153
3 27.55\0.7742 29.28\0.8209 29.63\0.8291 29.77\0.8314 29.77\0.8318 29.29\0.8396 30.00\0.8358
4 26.00\0.7027 27.49\0.7503 27.85\0.7640 28.01\0.7674 27.88\0.7651 27.36\0.7764 28.22\0.7729

B100

2 29.56\0.8431 31.36\0.8879 31.79\˜ 31.90\0.8960 31.88\0.8965 31.57\0.9019 32.11\0.8987
3 27.21\0.7385 28.41\0.7863 28.76\˜ 28.82\0.7976 28.76\0.7969 28.25\0.8086 28.95\0.8014
4 25.96\0.6675 26.90\0.7101 27.25\˜ 27.29\0.7251 27.19\0.7226 26.63\0.7370 27.38\0.7291

Urban100

2 26.88\0.8403 29.50\0.8946 - 30.76\0.9140 30.67\0.9144 30.78\0.9195 31.43\0.9211
3 24.46\0.7349 26.24\0.7989 - 27.14\0.8279 26.93\0.8237 26.88\0.8353 27.49\0.8362
4 23.14\0.6577 24.52\0.7221 - 25.18\0.7524 24.90\0.7430 24.79\0.7604 25.41\0.7608

loss =MSE + αSSIM, (2)

where α is a weight of SSIM. We took different values of
α and found that α = 0.01 performs well in our experiment.

We present the gradient calculation process of our loss
function below. Because it is easy to calculate the gradient of
MSE, we only show the gradient calculation process of SSIM.
The equation of SSIM can be expressed as,

SSIM(X,Y ) =
I1
I2
· S1

S2
, (3)

where I1
I2

denotes luminance measure and S1

S2
denotes con-

trast measure multiply by structure similarity [12]. In addi-
tion, X and Y denote two compared images. The expressions
of I1, I2, S1, and S2 are given below:

I1 = 2(c ∗X) · (c ∗ Y ) + C1, (4)

I2 = (c ∗X)2 + (c ∗ Y )2 + C1, (5)

S1 = 2(c ∗ (X · Y )− (c ∗X) · (c ∗ Y )) + C2, (6)

S2 = c∗(X ·X)−(c ∗X)2+c∗(Y ·Y )−(c ∗ Y )2+C2, (7)

where c denotes a Gaussian kernel with a window size of
11 × 11 and a variance of one, C1 and C2 denote constant
values that avoid instability when I2 and S2 are very close to
zero. C1 and C2 are set to 0.01. According to the chain rule,
the gradients of SSIM with respect to X can be split to two
parts: i) the gradients of SSIM with respect to I1, I2, S1, and
S2, ii) and the gradients of I1, I2, S1, and S2 with respect to
X . We only show the gradient calculation process of SSIM
with respect to I1 and I1 with respect toX because other parts
of SSIM have similar calculation process. The expressions of
two gradients are:

∂SSIM(X,Y )

∂I1
=

S1

I2 · S2
, (8)

∂I1
∂X

= 2(c ∗X) · ∂(c ∗X)

∂X
, (9)

where ∗ denotes the convolution operation. The ∂(c∗X)
∂X is

easy to calculate and we do not present it in our paper.

3. EXPERIMENT

3.1. Datasets

Training dataset In our experiment, we train a small network
and two large networks for each scale, respectively. Small
networks are trained on 91 images from Yang et al. [17] and
large networks are trained on 291 images with additional 200
images from Berkeley Segmentation Dataset [18]. In addi-
tion, rotation is used on training images to acquire more train-
ing data. We separately crop 36 × 36 patches with overlaps
from LR images and corresponding HR images as inputs and
labels. In some experiments, we set small overlapping areas
to reduce training data and accelerate training progress.

Testing dataset For benchmark, we use four datasets.
Datasets “Set5” [19] and “Set14” [20] are generic datasets
used in other works [4, 5, 21, 13]. “Urban100” [16] is a
very interesting database, since it contains many challenging
images failed by many of the existing methods. “B100” is the
testing set of Berkeley Segmentation Dataset [18].

3.2. Training Details

We train three networks for each scale. The first one is a
small network with 3 highway units (Small HNSR) and has
14 convolution layers. The second one is a large network with
7 highway units (Large HNSR) and has 30 convolution layers.
The last one is a large network which only takes SSIM as the
loss function (HNSR-SSIM). In our experiments, the batch
size is set to 64, weight decay is set to 0.0001, momentum is
set to 0.9, and dropout ratio is set to 0.2.

We train all the networks for 30 epoches. The learning
rate is initialized to 0.1 and divided by 10 after every 10
epoches. We use Adjustable Gradient Clipping [5] to limit
the parameters’ gradient in [−θ/γ, θ/γ], where γ denotes
current learning rate and θ is set to 0.1.
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Ground Truth

Ground Truth

SRCNN[4]

PSNR/SSIM 29.38/0.8720

VDSR[5]

PSNR/SSIM 31.48/0.9194

HNSR-SSIM (ours)

PSNR/SSIM 31.61/0.9257

Large HNSR (ours)

PSNR/SSIM 31.93/0.9294

Ground Truth PSNR/SSIM 24.67/0.9301 PSNR/SSIM 25.64/0.9484 PSNR/SSIM 25.55/0.9519 PSNR/SSIM 26.33/0.9555

Ground Truth PSNR/SSIM 24.61/0.8613 PSNR/SSIM 25.95/0.8906 PSNR/SSIM 25.47/0.8905 PSNR/SSIM 26.62/0.9009

Fig. 3. Visual results for ×2 on dataset “Urban100” [16]. HNSR-SSIM (ours) and Large HNSR (ours) both have 7 highway-
units and contain the similar number of parameters as the VDSR [5]. HNSR-SSIM uses only SSIM as the loss function. And
Large HNSR employs MSE and SSIM as the loss function and sets the SSIM weight as 0.01.

3.3. Comparison

For comparison with other methods, we follow the frame-
work of Timofte et al. [22]. In this framework, we apply
our method to luminance component and compute both PSNR
and SSIM on luminance component. The color components
for HR images are acquired from applying bicubic interpola-
tion on LR images.

Table 1 shows the average PSNR and SSIM performance
on Set5, Set14, B100 and Urban100 for magnification factors
×2, ×3 and ×4 of our networks in comparison with SRCNN
[4], IA [13], VDSR [5]. As shown in the table, our proposed
large HNSR gets higher PSNR and SSIM values than pre-
vious methods in these datasets. And HNSR-SSIM almost
achieves the best results when SSIM is used as the evalua-
tion standard. Large HNSR and HNSR-SSIM have the same
number of parameters as VDSR. In addition, Small HNSR
achieves similar results to VDSR and only have 0.3 million
parameters which is about half of VDSR’s.

In Figure 3, we show the comparison of different meth-
ods’ results on Urban100 for magnification ×2. As shown in

this figure, HNSR and HNSR-SSIM generally restore more
sharp details and more clear edges. In addition, as shown in
Table 1, HNSR-SSIM has a much lower PSNR and a higher
SSIM than VDSR. And obviously HNSR-SSIM has a better
visual effect than VDSR as shown in figure 3. Therefore, it
can be observed that SSIM is a better measure than PSNR and
introducing SSIM into the loss function of deep CNNs-based
SR is reasonable.

4. CONCLUSION

In this paper, we proposed a deep CNNs model for single im-
age super-resolution inspired by highway networks. We pro-
posed a highway unit, which is cascaded to form our easy
trainable deep convolutional neural networks. In addition,
we introduced SSIM into the loss function to make results
more consistent with human vision system. Promising high-
resolution image reconstruction results are achieved using the
trained deep CNNs model. Experimental results confirmed a
performance leap relative to compared state-of-the-art meth-
ods.
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