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ABSTRACT

In this paper, we propose single depth image super-resolution
using convolutional neural networks (CNN). We adopt CN-
N to acquire a high-quality edge map from the input low-
resolution (LR) depth image. We use the high-quality edge
map as the weight of the regularization term in a total vari-
ation (TV) model for super-resolution. First, we interpolate
the LR depth image using bicubic interpolation and extrac-
t its low-quality edge map. Then, we get the high-quality
edge map from the low-quality one using CNN. Since the
CNN output often contains broken edges and holes, we re-
fine it using the low-quality edge map. Guided by the high-
quality edge map, we upsample the input LR depth image in
the TV model. The edge-based guidance in TV effectively
removes noise in depth while minimizing jagged artifacts and
preserving sharp edges. Various experiments on the Middle-
bury stereo dataset and Laser Scan dataset demonstrate the
superiority of the proposed method over state-of-the-arts in
both qualitative and quantitative measurements.

Index Terms— Convolutional neural networks, depth im-
age, edge-guided, super-resolution, total variation.

1. INTRODUCTION

Depth estimation from natural scenes is a challenging task
in computer vision. Various depth cameras have been de-
veloped for depth acquisition including time-of-flight (TOF)
and light-coded cameras. However, depth images captured by
these cameras suffer from the limited spatial resolution and
much noise. Thus, depth image super-resolution (DISR) has
received much attention by researchers. Most DISR methods
have used a HR intensity image [1, 2, 3, 4, 5] as an assis-
tant. However, their performance are heavily depending on
the assumption that its HR color registered with the depth im-
age should be available, which may not be practical for many
applications. Thus, single DISR is more practical, which of-
fers challenges compared to color image-based DISR [6]-[7].
Aodha et al. [8] employed a patch-based Markov random field
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(MRF) model in DISR. Hornacek et al. [9] proposed to search
low and high resolution patch pairs via a rigid body transfor-
mation. Xie et al. [10] proposed coupled dictionary learning
with a regularized shock filter to reduce jagged noise while
sharpening edges. Ferstl et al. [11] generated HR depth edges
by learning a dictionary that contains edge priors. Inspired by
the edge guidance, Xie et al. [12] constructed HR edge map
through an MRF optimization through patch synthesis.

In this paper, we propose single DISR using CNN. We ac-
quire the high-quality edge map from LR depth image based
on CNN. Guided by the high-quality edge map, we perform
SR reconstruction of the LR depth image using a total vari-
ation (TV) model. First, we interpolate the input LR depth
image by bicubic interpolation. The interpolation result is
blurry and its edge information is not clear. Then, we get
its edge map by canny edge detection and extend the edge
region. This is because real edges are mostly located at the
extended regions. Next, we extract a window around pixels in
the edge region as the first input and the corresponding win-
dow in the interpolated depth map as the other input. We use
CNN on the two inputs to classify whether the center pixel
is a real edge or not, thus resulting in the high-quality edge
map. Since the CNN output contains broken edges and holes,
we refine the edge map with the help of the low-quality edge
map. Finally, we use a TV model for depth upsampling that
consists of the fidelity and regularization terms. In the TV
model, the high-quality edge map is used to adjust the weight
of the regularization term. Compared with existing methods,
main contributions of this paper are as follows:

• We propose a novel CNN architecture to acquire the
high-quality edge map from the low-quality one.

• We utilize the low-quality edge map to connect broken
edges and fill holes in the edge map.

• We use the high-quality edge map to adjust the weight
of the regularization term in TV.

2. PROPOSED METHOD

Fig. 1 illustrates the entire diagram of the proposed depth im-
age super-resolution method. The proposed method consists
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Fig. 1: Entire diagram of the proposed depth image super-resolution method. DLR: Input LR depth image. DBic: Interpolated
depth image by bicubic interpolation. El: Low-quality edge map from DBic. Ed: Dilated edge map from El. DC: Dilated
convolution layer. C: Convolution layer. FC: Fully connected (FC) layer. TV: Total variation. Eh: High-quality edge map
acquired by CNN. Ef : Refined edge map. DHR: Final HR depth image.

of high-quality edge map acquisition, edge map refinement,
and edge-guided depth upsampling. Deep conventional neu-
ral networks are used to get high-quality edge maps, and the
high-quality edge map is used as the weight of the regulariza-
tion term in the TV model.

2.1. Construction of Training Dataset

We first acquire Ed by dilating the edge region in El for each
pixel p in Ed. If it belongs to the dilated edge region, then we
perform the deep CNN to determine whether the pixel is edge
or not. If the pixel does not belong to the dilated edge region,
then it is treated as the non-edge pixel in Eh. To construct the
training dataset, we extract 65 depth images from Middlebury
stereo dataset [13, 14] and Laser Scan dataset [8] provided by
Aodha et al. [8]. Among them, 11 depth images are select-
ed as the test images. For each dataset, we first downsample
depth images by the scale S(×2, ×4) and add an standard
Gaussian noise to simulate the initial LR depth image DLR.
Then, we interpolate them by bicubic interpolation DBic and
extract its edge map using canny edge detector. Next, we di-
late the edge map with a S × S square kernel. Finally, we
extract a patch of size 21×21 around each pixel in the dilated
edge region as the first input and its corresponding region in
the interpolated depth map as the other input. The label of
the input is acquired by the binary value of the center pixel in
the edge map. We extract it from the ground truth depth im-
age. After extracting all patches, we randomly select 350000
sub-images for training and 15000 sub-images for testing.

2.2. High-Quality Edge Map Acquisition

Deep convolution neural networks are to do a binary classifi-
cation. Two inputs of the network is low-quality edge patch
and interpolated depth patch, while the output is labels of 1
(edge) and 0 (non-edge). As illustrated in Fig. 1, we use 3

dilated convolution (DC) layers consist of 32 kernels of size
5 × 5 × 1, 64 kernels of size 5 × 5 × 32 and 128 kernels of
size 3× 3× 64 for the first input, i.e. low-quality edge patch.
To accelerate the training process, we add a batch normaliza-
tion (BN) layer [15] after each DC layer, and the activation
function is rectified linear units (ReLU) [16]. We denote the
output of the each layer as DC1, DC2 and DC3. This is be-
cause we use DC layers to contain most possible edge points
in the patch, but not to expand the receptive field of the net-
work. If the receptive field is small, high level features would
not be learned. For the second input, i.e. interpolated depth
patch, we use 3 convolution layers that consist of 32 kernels
of size 5×5×1, 64 kernels of size 5×5×32 and 128 kernels
of size 3 × 3 × 64. The same as the first input, we add BN
layer and ReLU after each convolution layer. The output of
the each layer we denoted as C1, C2 and C3. We do not use
Pooling layers on the two inputs because the proposed net-
work is pixel-based classification network and the pixel infor-
mation would be lost when the input maps are downsampled
by pooling layers. Since C3 and DC3 do not have the same
size, we crop C3 to the same size as DC1. Denote the output
as Crop1. To synthesize the information of C3 and Crop1,
we add fully connected (FC) layers denoted as FC1, FC2,
FC3 with 1024, 512, and 2 neurons, respectively. Every lay-
er is followed by ReLU except the last layer. We assign a
softmax layer to the last layer to get a confidence score which
indicates the probability to be edge. During the training pro-
cess, we minimize binary cross-entropy loss with respect to
the weight w that parameterizes the network as follows:

min
w

− [ygt log p(ygt, w) + (1− ygt) log(1− p(ygt, w))]
(1)

where ygt is the binary label value; and p(ygt, w) is the out-
put that indicates the probability to be edge. We train our
network using stochastic gradient descent back propagation
with AdaGrad [17]. Similar to the moment-based stochastic
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Fig. 2: Left: Edge map with broken edges. Right: Depth SR
by the edge map.

Fig. 3: Left: Connected edges (red: new edge pixels). Right:
Filled holes (yellow: new edge pixels).

gradient descent, AdaGrad adapts the gradient based on his-
torical information. Compared with moment-based methods,
it emphasizes rare but informative features.

2.3. Edge Map Refinement

Based on CNN, we acquire an high-quality edge map Eh.
However, the CNN output includes broken edges and some
holes between edges, which may cause depth leak in the SR
reconstruction as shown in Fig. 2. Thus, we refine the edge
map using LR depth image. Denote the refined edge map as
Ef . To refine Eh, we first detect the broken edges and then
connect them using El. For each pixel p in Eh, if El(p) is
1, i.e. an edge pixel, then we extract matrices Ml and Mh of
size S × S in El and Eh, where S is the upsampling factor.
Finally, we perform AND operation onMl andMh. If the sum
of AND operation result is zero, then we assign the value of p
to 1, otherwise, it remains its value as follows:

Ef (p) =

{
El(p) if El(p) = 1 and Sum (Ml &Mh) = 0 ;
Eh(p) else ;

(2)
By this process, the depth leak caused by broken edges is re-
paired show as shown in Fig. 3. Moreover, there exist small
holes between continuous edge in the CNN output. As shown
in Fig. 4, we use four 3 × 3 edge patterns denoted as P1,
P2, P3, and P4. To find holes, we extract Ph,p of size 3× 3
around each non-edge pixel p in Eh, and perform AND op-
eration using four patterns. If all four results denoted as R1,
R2, R3, and R4 are smaller than 2, then it is truly a non-edge
point, otherwise, this pixel is a hole, we assign the value of p
to 1 as follows:

Ef (p) =

 1
if Eh(p) = 0 and ((R1 > 2) or
(R2 > 2) or (R3 > 2) or (R4 > 2));

Eh(p) else ;
(3)

Fig. 4: Edge patterns P1, P2, P3 and P4.

Connected edges and filled holes are shown in Fig. 3.

2.4. Edge-Guided Depth Upsampling

Guided by the edge map Ef , we use a variational approach
to get the depth SR image DR. Our variational approach in-
cludes two terms of the fidelity and regularization terms as
follows:

min
DR

E(DR) = E(DBic) + λRsmooth (4)

where λ is a fixed parameter to adjust two terms. The fidelity
termDBic makes the depth SR result be close to the input LR
depth map as follows:

E(Dbic) =
∑
p

( DR(p)−DBic(p) )
2

(5)

The regularization term ensures the smoothness of the depth
SR result based on total variation (TV) as follows:

Rsmooth =
∑
p

El(p)
[
|∂x(DR)|2 + |∂y(DR)|2

]
(6)

We use the high-quality edge map as the binary weights of
the regularization term. (4) is rewritten into a matrix form as
follows:

min
DR

[
(DR −DBic)

T
(DR −DBic)

]
+λEl

[
( (∂xD

R)
T
(∂xD

R) )

+( (∂yD
R)

T
(∂yD

R) )

]
(7)

We get the SR reconstruction result as follows:

DR = (I + λDx + λDy)
−1 ∗DBic (8)

where Dx and Dy are derivative operators in horizontal and
vertical directions, respectively.

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed method quanti-
tatively and qualitatively in comparison with state-of-the-art
SR methods. We perform experiments on publicly available
datasets including Middlebury stereo dataset [14, 21, 22, 23]
and the Laser Scan dataset provided by Aodha et al. [8]. We
set λ = 10 in (4) in all experiments. We implement the pro-
posed method on a PC with an Intel I7-6700 3.40 GHz CPU
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Table 1: RMSE Evaluation Results

Method
x4 x4

Cones Teddy Tsukuba Venus Scan21 Scan30 Scan42

NN 6.0054 4.5466 12.9083 2.9333 2.6474 2.5196 5.6044
Bicubic 3.8635 2.893 8.7103 1.9403 2.0324 1.9764 4.5813

Park et al.[3] 6.5447 4.3366 12.1231 2.2595 N/A N/A N/A
Yang et al.[18] 5.139 4.066 13.1748 2.7559 N/A N/A N/A
Ferstl et al.[4] 3.9968 2.808 10.0352 1.6643 N/A N/A N/A

NE+NNLS 3.4362 2.4887 7.5344 1.6291 1.7313 1.6849 3.5733
SRCNN [19] 4.219 2.456 8.6643 1.9717 1.6732 1.5141 2.783

Aodha et al.[8] 12.6938 4.1113 12.6938 2.6497 2.5983 2.6267 6.1871
Hornacck ct al.[9] 5.4898 5.0212 11.1101 3.5833 2.8585 2.7243 4.5074

Ferstl et al.[11] 3.568 2.6474 7.5356 1.7771 1.4349 1.4298 3.141
Xie et al.[12] 4.4087 3.2768 9.7765 2.3714 1.3993 1.4101 2.691

Proposed 3.1742 2.1357 6.3472 0.9955 1.2453 1.0022 1.5431

Table 2: SSIM Evaluation Results

Method
X4 X4

Cones Teddy Tsukuba Venus Scan21 Scan30 Scan42

NN 0.936 0.945 0.9003 0.98 0.9814 0.9828 0.9679
Bicubic 0.9538 0.9619 0.9205 0.9845 0.9875 0.9879 0.9743

Park et al.[3] 0.942 0.9553 0.8981 0.9862 N/A N/A N/A
Yang et al. [18] 0.9624 0.9695 0.9314 0.9879 N/A N/A N/A
Ferstl et al.[4] 0.9625 0.9707 0.9245 0.9901 N/A N/A N/A

NE+NNLS 0.9424 0.9499 0.8872 0.982 0.9896 0.99 0.9805
SRCNN [19] 0.9379 0.9408 0.8932 0.9766 0.9843 0.9853 0.9822

Aodha et al. [8] 0.9392 0.952 0.908 0.9822 0.9838 0.9838 0.9668
Hornacck ct al. [9] 0.9501 0.9503 0.9137 0.9789 0.9814 0.9825 0.9754

Ferstl et al. [11] 0.9645 0.9716 0.9413 0.9893 0.9918 0.9916 0.9819
Xie et al. [12] 0.9319 0.9331 0.8822 0.973 0.9869 0.9878 0.9899

Proposed 0.9711 0.9883 0.9599 0.9897 0.9959 0.997 0.9948

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: Depth SR reconstruction results in Cones and Teddy
when the upsampling factor is 4. Up to down, left to right:
Ground truth, Bicubic interpolation, Park et al. [3], ANR [20],
SRCNN [19], Xie et al. [12], Ferstl et al. [11], and Proposed
method.

and 8 GB RAM using Matlab2015b and Tensorflow. We com-
pare our results with three groups of methods: 1) Single depth
image SR methods such as SRCNN [19], Ferstl et al. [11] and
Xie et al. [12]; 2) Color assisted depth image SR approaches
such as Park et al. [3], Yang et al. [18], and Ferstl et al. [4]; 3)
Bicubic interpolation.

We provide RMSE and SSIM evaluation results on Mid-
dlebury dataset Cones, Teddy, Tsukuba and Venus) and Laser
Scan dataset (Scan21, Scan30 and Scan42) for up-sampling
factors ×4 in Tables 1 and 2. As listed in the tables, the pro-
posed method achieves the smallest RMSE compared with
other methods. Moreover, the SSIM score of the proposed
method is nearly close to 1 for most test images. The re-
sults indicate that the proposed method achieves good SR re-
construction in depth while successfully preserving structure
information. We also provide visual comparison results in

Fig. 6: Depth SR reconstruction results in Laser Scan data
set when the upsampling factor is 4. Left to right: Ground
Truth, Bicubic interpolation, ANR [20], SRCNN [19], Xie et
al. [12], Ferstl et al. [11], and Proposed method.

depth SR reconstruction on different images by factor ×4 in
Figs. 5 and 6. Pseudo-color are employed in the depth maps
to show details more clearly. It is obvious that the proposed
method produces more visually pleasing results than the oth-
ers. Above all, object boundaries of the proposed method are
sharper than the others along the edge direction, which in-
dicates that the proposed method successfully preserves the
structure of the scene.

4. CONCLUSION

In this paper, we have proposed single DISR using CNN. We
have addressed the DISR problem by HR edge prediction, in-
stead of HR texture prediction. We have produced a high-
quality edge map for depth upsampling based on CNN. Guid-
ed by the high-quality edge map, we have reconstructed SR
depth images from LR ones using TV regularization. Specif-
ically, the high-quality edge map has been used as the weight
of the regularization term in the TV model. Experimental re-
sults demonstrate that the proposed method achieves better
performance in SR reconstruction than state-of-the-arts in-
cluding texture prediction-based ones while successfully pre-
venting artifacts such as jagged edges, blurring and ringing.
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