EDGE-BASED LOSS FUNCTION FOR SINGLE IMAGE SUPER-RESOLUTION

George Seif, Dimitrios Androutsos

Ryerson University
Department of Electrical and Computer Engineering
350 Victoria St.

ABSTRACT

In recent years, convolutional neural networks have shown
state-of-the-art performance on the task of single-image
super-resolution. Although these proposed networks have
shown high-quality reconstruction results, the use of the
mean-squared error (MSE) loss function for training tends to
produce images that are overly smooth and blurry. The MSE
does not consider image structures that are often important for
achieving high human-perceived image quality. We propose
a novel edge-based loss function to improve super-resolution
resconstruction of images. Our loss function directly opti-
mizes the edge pixels of the reconstructed image, thus driving
the trained network to produce high-quality salient edges and
thus sharper images. Extensive quantitative and qualitative
results show that our proposed loss function significantly
outperforms the MSE.

Index Terms— Image super-resolution, Deep neural net-
work, convolutional neural network, edge detection

1. INTRODUCTION

Single Image Super-Resolution (SISR) is an image process-
ing task having the aim of increasing the spatial resolution
of a digital image. Prior literature generally formulates the
problem as trying to reconstruct the original High Resolu-
tion (HR) image from its corresponding Lower Resolution
(LR) image. The LR image lacks much of the high-frequency
details from the original which represent perceptually pleas-
ing image structures and textures. The main challenge of
SISR lies in the reconstruction of these high-frequency de-
tails, given only a LR image that mainly lacks the original
HR image’s high-frequency components.

Learning algorithms largely dominate the state-of-the-art
in SISR. Sparse coding based methods [1, 2, 3] use diction-
airy learning to learn sparse signal representations for image
patches. Random forests [4] and neighbour embeddings [5]
based methods have also performed well on SISR.

Most prominently, deep learning based methods have
been applied to SISR with great success. Dong et al. [6]
proposed a Super-Resolution Convolutional Neural Network
(SRCNN) that learned the direct mapping from a LR image
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upscaled using bicubic interpolation to the original HR image.
Further improvements have been made to deep Convolutional
Neural Network (CNN) architectures using residual learning
[7], recursive learning [8], learned upscaling [9], or a combi-
nation of these ideas [10]. The most recent model proposed in
[10] uses the Charbonnier loss functions where as the others
all use the mean-squared error (MSE).

While MSE based loss functions have shown promise they
do suffer from a number of drawbacks. It has been shown that
MSE does not correlate well with perceptual quality as judged
by human observers [11] due to the fact that the MSE does
not take into account any salient features embedded within
the image. Salient features such as structure and texture have
been shown to be highly correlated with human-perceived im-
age quality [12] as well as being very useful for computer vi-
sion tasks [13]. Without these structures, the network has no
contextual guide to reconstruct the image, and only relies on
raw pixel values.

Recently, a few alternative loss functions have been pro-
posed to address the drawbacks of the MSE by leveraging dif-
ferent kinds of salient features. Johnson et al. [14] proposed
a feature-based loss function where the loss is the Euclidean
distance between feature representations of the orignal HR
image and the LR reconstructed image. Their loss function
proved to be qualitatively effective at reconstructing perceptu-
ally important image features but did not perform well quan-
titatively in terms of PSNR and SSIM due to it’s main focus
being on the features and not at all on direct pixel values.
Frosio et al. [11] presented a study on training CNNs for gen-
eral image restoration using various loss functions including
MSE, mean-absolute error (MAE), and MS-SSIM (multiscale
SSIM). They found that a combination of a pixel and struc-
tural loss i.e a weighted sum of MAE and MS-SSIM was ef-
fective in increasing the quantitative PSNR/SSIM metrics as
well as maintaining perceptual quality. Our edge-based loss
function is inspired by [11] but is more intuitive than the MS-
SSIM and allows us to train the network to reconstruct the ex-
act image structures that are desired. Lin et al. [15] proposed
to train a network to output two images: a binary edge map
and the reconstructed image where the total loss is the MSE
of both of these images. There are a couple of drawbacks to
this approach. Firstly, the edge map is produced separately
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from the reconstructed image and thus the network has to bal-
ance optimization for two totally different outputs; because
the edge map is being predicted seperately from the final re-
constructed image, the edges of the reconstructed output are
not being directly optimized. Secondly, the predicted edge
map uses ground truth binary edges and thus when comput-
ing its loss function the exact pixel values of those edges are
not being taken into account.

We propose an edge-based loss function for SISR to ad-
dress the drawbacks with MSE and to improve upon previous
attempts at designing a loss function that is in coherence with
image structures and contrast. Our loss function optmizes
the deep network parameters such that image edges are given
more significant importance. We achieve this by learning the
exact edge pixel values directly from the reconstructed im-
age. This ensures that the network reconstructs high-quality
and accurate edges that are most important in improving per-
ceptual image quality [12], as well as aiding in vision tasks
[13]. Our loss function can be used to train any CNN and is
thus versatile to be applied to any fully-convolutional image
restoration task. Extensive quantitative and qualitative experi-
ments show that our loss function significantly improves SISR
reconstruction over the MSE on the same CNN architecture.

2. EDGE-BASED LOSS FUNCTION

2.1. Methodology

Given an LR image that is upscaled using bicubic interpola-
tion, we wish to design a loss function that can be used to
train a deep CNN to reconstruct the corresponding HR im-
age. Our loss function is inspired by previous ideas of com-
bining a pixel-based loss with a structural loss [11, 15]. The
pixel-based loss component promotes overall accuracy of the
reconstructed image i.e for pixel values to be directly similar
to those of the original. This insures that there are no major
changes in colour, lighting, or overall contrast of the image.
The structural loss component guides the network to produce
salient image structures that would be considered perceptu-
ally important to human observers. In particular, we propose
to use edges as the basis for our structural loss.

The main challenge in SISR is the reconstruction of
salient edges. Consider the edge maps shown in Figure 1.
The original HR edge map shows many salient edges where
as in the LR X4 scale reconstructed image, many of those
edges are not present. Due to the fact that purely pixel-based
loss functions equally weight all image pixels in the loss
function, the network is not being optimized in a way that
directly promotes the reconstruction of these salient edges.

Since salient edges are important in terms of perceptual
image quality, we propose that edges should be given extra
weight in the loss function via an edge-loss component. Con-
sider a training example where X is the bicubic upscaled LR
image with width W and height H, Y is the original HR im-

(a) HR Edge Map (b) LR x4 Edge Map
Fig. 1: Edge maps of an HR image and its corresponding
reconstructed LR image at x4 scale, obtained using the default
Matlab Canny edge detector.

age, and F is the corresponding HR edge map. To form the
edge-loss component, we first apply a Canny edge detector
(using Matlab default parameters) to the original HR training
image Y to get the edge map E. The Matlab default Canny
edge detector computes the high edge threshold by comput-
ing the gradient map of the image, followed by constructing
a normalized histogram of the edge gradients, and then deter-
mining which high threshold would make at lease 70 percent
of the pixels non-edge pixels; the low threshold is selected as
0.4 times the high threshold. The edge loss component is then
computed as the mean of the product of the binary edge map
and the reconstruction error:
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To obtain the final loss, the edge loss component is
summed with a pixel loss component that is the mean-
abosulte error (MAE) between the original HR image and
the reconstructed LR image:
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where « is used to control the weightg of each loss com-
ponent, and we empirically set « = 0.7. The edge compo-
nent drives the network to reconstruct edges that are closer
to those of the original, thus giving the network a structural
edge-guidance. The pixel loss maintains the lighting and con-
trast of the original HR image. We use the MAE rather than
MSE because with its extra squaring, the MSE heavily pe-
nalizes larger errors while having less of an effect on smaller
errors, regardless of the image features or structures. Using
MSE for the edge loss would over-emphasize the edge errors
causing perceptually important aspects of the image such as
overall lighting or contrast to have less overall weight in the
total loss. Thus MAE allows for balanced weighting of the
two loss components. Lai et al. [10] and Zhao et al. [11] also
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report more successful results when training with an MAE
loss variant over MSE.

By computing the edge loss component from the recon-
structed LR image rather than as a seperate output [15], the
final reconstructed image is being directly optimized to have
more similar salient edges as the original HR image. More-
over, as a loss function it can be used to train any image
restoration network to produce more salient edges. Critically,
our edge loss component is computed using the exact pixel
values of the edges, rather than a binary edge map. This
ensures that edges similar to the original are being recon-
structed. When a binary edge map is used [15] the edge pixel
values are not taken into account, which can produce edges
that are perceptually different from those of the HR image.
Furthermore edge loss function is intuitively simple to under-
stand and can further be improved using ground truth edges
rather than a Canny edge detector.

2.2. Implementation and training details

As a baseline model we use the state-of-the-art VDSR archi-
tecture trained with the MSE [7]. We use the same training
data as VDSR using 91 images from Yang et al. [2] and
200 images from the Berkeley Segmentation Dataset [16].
The training data is augmented in the same way as original
VDSR using rotations and flips and uses the same patch size
of 41x41 pixels. We train our network using the Adam op-
timizer [17] with learning rate 10~%. The implementation is
done in Keras using Tensorflow backend. PSNR and SSIM
are computed by first converting colour images to YCbCr
colour space and evaluating only the luminance channel for
fair comparison against other methods. The final colour im-
ages are obtained by applying bicubic interpolation to the Cb
and Cr channels, concatenating with the super-resolved lumi-
nance channel, and converting to RGB format.

3. EXPERIMENTAL RESULTS

We evaluate our loss function on well-known SISR bench-
mark datasets: Set5 [18], Set14 [19], BSDS100 [20], and Ur-
ban100 [21]. We conduct and present both quantitative and
qualitative evaluations. As shown in Table 1, our loss func-
tion with VDSR outperforms the original VDSR trained with
MSE. Furthermore, training VDSR with our edge-based loss
function allows it to outperform other architectures that would
normally perform better with their selected loss functions,
such as DRCN [8] with MSE and LapSRN [10] with Char-
bonnier. It can also be observed that our edge-loss achieves
larger improvements over MSE with images that have many
edges. In particular, our loss shows the largest improves on a
X2 scale because the input image, a X2 bicubic upscale LR
image, has many salient edges that are already close to the
original HR ones. For larger scales such as X4 many of the
original HR edges are either heavily distorted or completely

gone from the image, thus making edge reconstruction more
challenging.

We also conducted a survey as a qualitative evaluation of
our loss function. We first super-resolved every image in the
Urban100 dataset at an X3 scale using two networks trained
separately with our loss and MSE respectively. We cropped
the center 200x200 pixel patch of each image such that the
difference in restoration performance can clearly be seen. Us-
ing Amazon Mechanical Turk (AMT) we conducted our sur-
vey by asking users to select the restored image that is the
clearest and sharpest. We collected a total of 8000 user sub-
missions from the Urban100 dataset and in Figure 2 plot a
histogram of the proportion of participants preferring our loss
function over MSE for each of the 100 image pairs. From the
histogram, for 65 out of the 100 images in the survery, at least
50% of participants selected the image restored using our loss
function as clearer and sharper. Additionally, many images
had a strong majority vote with at least 60% and 70% of par-
ticipants selecting the image restored using our loss function
as clearer and sharper for 44 and 27 of the 100 test images,
respectively. We also computed the average participant selec-
tion for all 100 images and found that overall 63% of partci-
pants selected the image produced using our loss function as
being clearer and sharper.

MNumber of images

o

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of participants preferring our loss over MSE

Fig. 2: Histogram of the proporations of participants prefer-
ring our loss function over MSE for each of the 100 image
pairs in the Urban100 dataset

Figures 3, 4, and 5 also show some upscaling results for
X2, X3, and X4 scales, respectively. Here we compare the
performance of MSE vs. our edge loss directly by showing
the results from training VDSR. This provides the most di-
rect comparison between the two to evaluate if our loss func-
tion indeed outperforms MSE using the same network. As
can be seen, our loss function optimizes the network to prop-
erly reconstruct salient edges, without sacrificing anything in
lighting or contrast. The edge guidance provides the most
improvement when edges in the original HR image are most
clearly defined. Our results can also further be improved
by using ground-truth, human labelled edges rather than the
Canny edge detector.
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Table 1: Quantitative evaluation of state-of-the-art SR algorithms using PSNR/SSIM

Dataset | Scale Bicubic SRCNN VDSR DRCN LapSRN Ours
2 33.66/0.9299 | 36.66/0.9542 | 37.53/0.9587 | 37.63/0.9588 | 37.52/0.959 | 37.70/0.9602
Set5 3 30.39/0.8682 | 32.75/0.9090 | 33.66/0.9213 | 33.82/0.9226 | 33.82/0.922 | 33.82/0.9228
4 28.42/0.8104 | 30.48/0.8628 | 31.35/0.8838 | 31.53/0.8854 | 31.54/0.885 | 31.45/0.8848
2 30.24/0.8688 | 32.42/0.9063 | 33.03/0.9124 | 33.04/0.9118 | 33.08/0.913 | 33.28/0.9142
Set14 3 27.55/0.7742 | 29.28/0.8209 | 29.77/0.8314 | 29.76/0.8311 | 29.87/0.832 | 29.93/0.8322
4 26.00/0.7027 | 27.49/0.7503 | 28.01/0.7674 | 28.02/0.7670 | 28.19/0.772 | 28.15/0.7708
2 29.56/0.8431 | 31.36/0.8879 | 31.90/0.8960 | 31.85/0.8942 | 31.80/0.895 | 31.98/0.8961
BSDS100 3 27.21/9.7385 | 28.41/0.7863 | 28.82/0.7976 | 28.80/0.7963 | 28.82/0.798 | 28.88/0.7985
4 25.96/0.6675 | 26.90/0.7101/ | 27.29/0.7251 | 27.23/0.7233 | 27.32/0.728 | 27.35/0.7254
2 26.88/0.8403 | 29.50/0.8946 | 30.76/0.9140 | 30.75/0.9133 | 30.41/0.910 | 30.94/0.9153
Urban100 3 24.46/0.7349 | 26.24/0.7989 | 27.14/0.8279 | 27.15/0.8276 | 27.07/0.828 | 27.28/0.8288
4 23.14/0.6577 | 24.52/0.7221 | 25.18/0.7524 | 25.14/0.7510 | 25.21/0.756 | 25.28/0.7568

k

(b) Ours (w/ edge loss)

Fig. 3: X2 SR results on the 'monarch’ image from Set14

(a) Original HR image

.

k

(c) VDSR (w/ MSE)

(a) Original HR image

(b) Ours (w/ edge loss)

(c) VDSR (w/ MSE)

(a) Original HR image

L

(b) Ours (w/ edge loss) (c) VDSR (w/ MSE)

Fig. 5: X4 SR results on the *imgg15'image fromBSDS100

4. CONCLUSION

We have presented an edge-based loss function to address the
challenge of reconstructing salient edges in SISR. In contrast
to other approaches, our method uses well defined edges as
a structural guide for network training to aid in optimal edge
reconstruction. Experimental results have shown that our loss
function outperforms others used in state-of-the-art models
both quantitatively and qualitatvely. Our results can further
be improved by using ground-truth edges.

Fig. 4: X3 SR results on the *108005” image from BSDS100
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