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ABSTRACT
Deep learning methods, in particular trained Convolutional
Neural Networks (CNNs) have recently been shown to pro-
duce compelling state-of-the-art results for single image
Super-Resolution (SR). Invariably, a CNN is learned to map
the low resolution (LR) image to its corresponding high res-
olution (HR) version in the spatial domain. Aiming for faster
inference and more efficient solutions than solving the SR
problem in the spatial domain, we propose a novel network
structure for learning the SR mapping function in an image
transform domain, specifically the Discrete Cosine Trans-
form (DCT). As a first contribution, we show that DCT can
be integrated into the network structure as a Convolutional
DCT (CDCT) layer. We further extend the network to allow
the CDCT layer to become trainable (i.e. optimizable). Be-
cause this layer represents an image transform, we enforce
pairwise orthogonality constraints on the individual basis
functions/filters. This Orthogonally Regularized Deep SR
network (ORDSR) simplifies the SR task by taking advan-
tage of image transform domain while adapting the design of
transform basis to the training image set. Experimental re-
sults show ORDSR achieves state-of-the-art SR image quality
with fewer parameters than most of the deep CNN methods.

1. INTRODUCTION

Single Image Super-Resolution (SISR) has emerged as one
of the most significant ill-posed imaging problems due to a
variety of applications in civilian domains as well as in law
enforcement [1]. With an increasing number of mobile cam-
eras, generating a clean, sharp image with lower storage and
computation requirements is highly desirable.

The single image SR task has been addressed by dictio-
nary based and sparsity constrained learning methods and
more recently via deep learning methods. A typical learn-
ing/example based SR approach employs two dictionaries
of HR/LR images/patches [2, 3, 4, 5, 6]. These dictionaries
are often learned with sparse coding methods to reconstruct
the SR results. Many of these methods require handcrafted
dictionary features which are not readily available [7].

Recently, deep learning methods have shown to produce
compelling state-of-the-art SR results and across a variety of
different image collections [8]. One of the earliest deep SR
methods was SRCNN [9, 10] and its extensions that train
multiple coupled networks have been pursued as well [11].
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Other variants include [12, 13] which use self-similar patches
to explore the self-example based SR idea. However, the net-
work structures are no-less mutations of straightforward spa-
tial mapping functions between LR/HR image. These spa-
tial domain mappings were further boosted by global and lo-
cal by-pass structures as introduced by residual learning [14].
Residual network structures essentially reduce the training
burden (in the sense of learning complexity) of the deep CNN
which is still constructed in spatial domain.

Motivation: Our work is motivated by the recent promis-
ing performance of SR methods in the transform domain [8].
Our goal is faster inference and structures with fewer parame-
ters than existing spatial domain CNNs. Specifically, the Dis-
crete Wavelet Transformation (DWT) has been explored for
the SR problem in traditional frameworks [15, 16, 17, 18] and
more recently also in deep networks [19].

In this paper, we begin by exploring a DCT domain deep
SR method. In the DCT domain, the differences between a
given LR-HR image pair is the missing high-frequency in-
formation while they typically share the same low-frequency
signature (see analysis in section 2). Because the low-to-high-
resolution mapping is simpler, the learning burden of the net-
work can be reduced and both the convergence rate and infer-
ence of the network can become faster. As a first contribution,
we show that DCT can be integrated into the network struc-
ture as a convolutional DCT (CDCT) layer. We further extend
the network to allow the CDCT layer to become trainable (i.e.
optimizable). Because this layer represents an image trans-
form, we enforce pairwise orthogonality constraints on the
individual basis functions/filters. This Orthogonally Regular-
ized Deep SR network (ORDSR) simplifies the SR task by
taking advantage of image transform domain while adapting
the design of transform basis to the training image set.

The main contributions of this paper are as follows:

1. We propose a novel network structure that attacks SR
problem in the image transform domain;

2. We build a special CDCT layer integrating DCT pro-
cedure into the network, where the CDCT filters are
adaptable and trainable;

3. We add novel orthogonality constraints on the newly
introduced ‘transform layer’ to maintain the pairwise
orthogonality properties of the learned basis.

To the best of our knowledge, ORDSR network is the first ap-
proach that allows optimization of basis functions for trans-
form domain image SR within a deep learning framework.
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Fig. 1: Left: zig-zag reorder of the DCT basis family. Right: aver-
age coefficient values generated by {wi}64i=1 of lenna.bmp.

2. SUPER-RESOLUTION IN DCT DOMAIN

An image x(n1, n2) of size H ×W can be decomposed into
H/N ×W/N blocks of size N ×N . For the (m,n)th block,
the DCT coefficients are computed as:

Xm,n(k1, k2) =
N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)× wk1,k2(n1, n2) (1)

where k1, k2, n1, n2 = 0, . . . , N − 1, and wk1,k2(n1, n2) is
the DCT basis function, specifically DCT-II basis, defined as:

wk1,k2(n1, n2) = Ck1,k2cos
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where Ck1,k2 =

√
1+δk1

√
1+δk2

N and δk = 1 if k = 0, δk = 0
otherwise. For N = 8, there are 8 × 8 DCT bases and each
basis wk1,k2 is of size 8× 8.

Basis functions {wk1,k2}N,Nk1,k2=1,1 ∈ RN×N are pairwise
orthogonal, forming an orthogonal basis family:

< wk1,k2 , wl1,l2 >=

{
1, if k1 = l1, and k2 = l2

0, Otherwise
(3)

Corresponding to the DCT, the inverse DCT (IDCT) for
the (m,n)th block is computed as:

xm,n(n1, n2) =
N−1∑
k2=0

N−1∑
k1=0

Xm,n(k1, k2)× wk1,k2(n1, n2) (4)

Note that classical DCT is performed on N ×N blocks of the
original image. We now develop a reorganization of the DCT
coefficients and their computation, which we show in Section
3 helps facilitate the implementation of DCT within a CNN.

Zig-zag reorder: We treat DCT basis functions as filters
and reorganize them in a zig-zag order as shown in Fig. 1.
The zig-zag function maps {wk1,k2}N,Nk1,k2=1,1 to {wi}N×N

i=1 .
Specially, with the zig-zag mapping, as the index i increases,
the complexity of wi also increases, i.e. the lower end of
{wi}64i=1 is corresponding to low-frequency filters, while the
higher end (bigger i) represents the high-frequency ones.

Given an HR image y, and its LR version x, we can plot
the average coefficient values generated by the DCT filters

{wi}N×N
i=1 , as shown in Fig. 1. As the plot suggests, the HR

image y and the LR image x share the same low-frequency
spectra, while x has less high-frequency information than y.
With the help of DCT filters, SR becomes a problem of recov-
ering high-frequency DCT coefficients of the HR image from
the corresponding ones of the LR input.

3. CONVOLUTIONAL DCT LAYER WITH THE
ORTHOGONALITY CONSTRAINTS

To integrate the DCT analysis within a CNN, we construct a
convolutional DCT (CDCT) layer.

Initialization: The CDCT layer is initialed using the DCT
basis {wi}N×N

i=1 . For N = 8, there are 64 filters {wi}64i=1 of
size 8× 8 in the CDCT layer such that the complexity (high-
frequency content) increases with the filter index.

Unlike classical DCT that produces 8×8 block-wise DCT
coefficients, the CDCT layer produces 64 frequency maps
{fi}64i=1 for the whole image by convolving {wi}64i=1 with the
input image x as shown in Eq. (5).

fi = wi ∗ x,∀i ∈ [1, ..., 64] (5)

These maps, {fi}64i=1, form a cube called DCT cube. The
DCT cube is essentially a reorganized version of classical
block-wise DCT coefficients of the whole image.

As i increases, fi corresponds to higher frequency com-
ponents of the whole image. Thus, we divide the DCT cube
into two parts by a threshold T , namely low-frequency spec-
tral maps flow = {fi}Ti=1 and high-frequency spectral maps
fhigh = {fi}64i=T+1.

The CDCT layer can also perform IDCT by transpose
convolving1 {wi}64i=1 with the DCT cube {fi}64i=1 respec-
tively, resulting in the spatial image y. This procedure can be
viewed as a convolution of wi with a 8-zero padded fi:

y =

64∑
i=1

wi ∗ g(fi) (6)

where g(·) is the zero padding function. For details on the
implementation of both the DCT and IDCT as a CNN layer
we refer the reader to our accompanying technical report [22].

Orthogonality Constraints: The aforementioned CDCT
layer can in fact be learned. Consistent with classical DCT,
we enable learning but in the presence of pairwise orthogo-
nality constraints. These constraints are captured by a reg-
ularization term which is added to the network’s total cost
function – see Eq. (8). As suggested in (3), any distinct fil-
ter pairs in the CDCT layer should have a zero inner product.
Here, the inner product is computed by vectorized multiplica-
tion between two filters. Ideally, ε should be zero but may be
relaxed slightly in practice for numerical optimization.

∀i 6= j, ‖vec(wi)T vec(wj)− ε‖22 = 0 (7)

1Some literature [20, 21] refer this procedure as deconvolution, fraction-
ally stride convolution or backward convolution in neural network setups.
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Fig. 2: The ORDSR network structure. Please refer to color version
to follow the network flow. The CDCT layer serves two purposes:
producing DCT cube (following blue arrow) and generating SR im-
age from a SR-DCT cube (following orange arrow).

4. ORDSR NETWORK STRUCTURE

The ORDSR network has two parts: a CDCT layer and a
D−layer CNN. The CDCT layer produces both the DCT
cube of the input image and generates the SR results from
the CNN’s output DCT cube. The CNN recovers the high-
frequency spectra by generating a SR-DCT cube.

Fig. 2 shows the structure of the ORDSR network with
N = 8. For an input LR image x, the goal of ORDSR is to
generate its SR version ŷ as follows:

1. The input LR image x is convolved with CDCT layer
producing DCT cube {fi}64i=1 as shown in (5);

2. The DCT cube of x is divided as flow and fhigh corre-
sponding to low and high-frequency spectra by an index
threshold T , based on description in Section 3;

3. The CNN takes fhigh as input and recovers the missing
high-frequency information using a residual network
structure, generating f̂high;

4. The f̂high is appended by flow forming the SR-DCT
cube {f̂i}64i=1. As the flow is unchanged between x and
its corresponding HR image y, only fhigh needs to be
modified for generating ŷ;

5. The SR-DCT cube {f̂i}64i=1 is transpose convolved with
CDCT layer (to perform the IDCT) generating ŷ, as
shown in (6).

In step 3, only taking the fhigh components of the DCT
cube reduces the input channel numbers for the CNN, which

makes the training procedure faster. In step 4, the CNN uses a
residual network structure to further reduce the computational
burden. Steps 1 and 5 are performed in the image spatial do-
main while steps 2-4 are in the image transform domain.

The inference procedure is denoted as h(Θ,b)(x) = ŷ,
where (Θ,b) is the collection of all the trainable filter
weights and biases of ORDSR network. Note that Θ =
{ΘCNN, {wi}64i=1} as shown in Fig. 2.

We develop a modified back-propagation scheme [22]
which enables the proposed ORDSR to minimize:

Θ,b = argmin
Θ,b

1

2
‖h(Θ,b)(x)− y‖22 + σ

∑
t

‖Θt‖22

+γ
∑
(i,j)

‖vec(wi)T vec(wj)− ε‖22
(8)

where {(i, j)} are all the unique pairwise indexes of the {wi}
and t is the collective index of all trainable filter weights in
Θ. ORDSR also utilizes an `2 regularization of weights with
a trade off parameter σ. Note wi ∈ Θ, thus filters of CDCT
layer are updated to generate a better ŷ.

5. EXPERIMENTAL RESULTS

Data preparation: The 291 images dataset [23] is used for
training. The images are augmented by rotating the images
by {90◦, 180◦, 270◦} and scaling by factors of {0.7, 0.8, 0.9}.
The augmented images are down-sampled and subsequently
enlarged using bicubic interpolation to form the LR train-
ing images. All the LR/HR images are further cropped into
40 × 40 pixels sub-images with 10 pixels overlap for train-
ing. During the test phase, Set5 [24] and Set14 [25] are used
to evaluate our proposed method. Both training and testing
phases of ORDSR only utilize the luminance channel infor-
mation. For color images, Cb, Cr channels are enlarged by
bicubic interpolation.

Training Settings: During the training process, the gra-
dients are clipped to 0.01 and the Adam optimizer [26] is
adopted to update (Θ,b). The initial learning rate is 0.001
and decreases by 25% every 25 epochs. σ is set to 1 × 10−3

to prevent over-fitting. The CNN has D = 14 same-sized
convolutional hidden layers with filter size of 3 × 3 × 64.
This configuration results in a network with only 75% of the
parameters in the state-of-the-art method VDSR [14]. The
ORDSR is implemented with TensorFlow [27] packages on
one TITAN X GPU for both the training and testing, which
takes 5 hours to reach 85 epochs for the reported results.

SR Results:2 Table 1 shows the comparison of ORDSR
with other state-of-the-art methods: classical methods ScSR
[5] and A+ [28], deep learning based methods SelfEx [12],
FSRCNN [10], SRCNN [9] and VDSR. The metrics used
for image quality assessment are PSNR and SSIM [29]. The
comparison is constrained among methods with the same
training set and same computational requirements. ORDSR

2Code available on http://signal.ee.psu.edu/ORDSR.html
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Table 1: PSNR and SSIM comparisons. (The best results are shown in bold red and the second best are shown in blue.)

PSNR SSIM Scale
Bicubic

[Baseline]
ScSR

[TIP 10]
A+

[ACCV 14]
SelfEx

[CVPR 15]
FSRCNN

[ECCV 16]
SRCNN

[PAMI 16]
VDSR

[CVPR 16]
ORDSR

[Proposed]

Set5
x2
x3
x4

33.64 0.9292
30.39 0.8678
28.42 0.8101

35.78 0.9485
31.34 0.8869
29.07 0.8263

36.55 0.9544
32.58 0.9088
30.27 0.8605

36.47 0.9538
32.57 0.9092
30.32 0.8640

36.94 0.9558
33.06 0.9140
30.55 0.8657

36.66 0.9542
32.75 0.9090
30.48 0.8628

37.52 0.9586
33.66 0.9212
31.35 0.8820

37.53 0.9574
33.74 0.9221
31.45 0.8847

Set14
x2
x3
x4

30.22 0.8683
27.53 0.7737
25.99 0.7023

31.64 0.8940
28.19 0.7977
26.40 0.7218

32.29 0.9055
29.13 0.8188
27.33 0.7489

32.24 0.9032
29.16 0.8196
27.40 0.7518

32.54 0.9088
29.37 0.8242
27.50 0.7535

32.42 0.9063
29.28 0.8209
27.40 0.7503

33.02 0.9102
29.75 0.8294
28.01 0.7662

33.04 0.9109
29.81 0.8300
28.06 0.7664

Table 2: Average results on Set14 with scale factor 3
γ = 1

γ = 0 wi /∈ Θ
ε = 0.0001 0.001 0.01 0.1 0.5 1

PSNR 29.7932 29.8104 29.7815 29.7805 29.7786 29.7208 29.7621 29.7165
SSIM 0.8295 0.8300 0.8281 0.8265 0.8266 0.8252 0.8201 0.8189

(a) ε = 0.0001 (b) ε = 0.001 (c) ε = 0.01

Fig. 3: Learned filters of CDCT layers with different ε. (Filters are
normalized and reordered for display purpose.)

produces best results using only 75% the number of the pa-
rameters than VDSR. Fig. 5 displays the testing image in
detail, ORDSR generates more defined edges with better
quality assessments among the competing methods.

CDCT Layer: With different ε, the orthogonality con-
stants have different effects on the CDCT layer. As shown
in Table 2, with γ = 1, a very small or very big ε will end
up with a tightly constrained or relaxed CDCT layer. Fig. 3
shows smaller ε preserves more DCT filters structure within
the CDCT layer. Cross validation shows ε = 0.001 produces
the best results. With γ = 0, the ORDSR is trained without
the orthogonality constraints, which produced less favorable
results showing the importance of CDCT layer being orthog-
onal. Also if we excludes wi from Θ, the ORDSR is trained
without updating the CDCT layer at all. Table 2 shows the
importance of CDCT layer being adaptively trainable.
Threshold T : Fig. 4 shows the effects of T over the PSNR of
the SR results. A smaller T implies a smaller fraction of flow
is directly copied to SR-DCT cube as described in the infer-
ence step 3. However, after T < 4, decreasing the threshold
does not change the SR image quality significantly. This fur-
ther shows that the low frequency spectra between LR/HR
image are indeed shared. All reported results use T = 4.

6. CONCLUSION
We propose a novel network structure to tackle SR problem
in the image transform domain. We show that DCT can be
integrated into the network structure as a Convolutional DCT
(CDCT) layer. We further extend the network to allow the
CDCT layer to become trainable (i.e. optimizable). Experi-
mental results show the effectiveness of performing SR in the
image transform domain by ORDSR, also the significance of
ORDSR learning bases that are specific for natural image SR.

T (channels)
0 5 10 15 20 25 30 35

P
S

N
R

 (
d

B
)

29.7

29.75

29.8

Fig. 4: Avg. PSNR of Set14 with scale factor 3 on different T .
When T < 4 , decreasing T will not affect the SR results.

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Original Bicubic (29.357, 0.9199)

SRCNN (32.324, 0.9453) FSRCNN (32.534, 0.9484)

VDSR (34.587, 0.9588) ORDSR (34.791,0.9596)

Fig. 5: The SR results of test image monarch.bmp of scale factor
3. The image metrics is shown as (PSNR, SSIM). ORDSR produces
best visual results with better quality assessments.
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