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ABSTRACT

Multi-focus microscope (MFM) provides a way to obtain 3D in-
formation by simultaneously capturing multiple focal planes. The
naive method for MFM reconstruction is to stack the sub-images
with alignment. However, the resolution in the z-axis in this method
is limited by the number of acquired focal planes. In this work we
build on a recent reconstruction algorithm for MFM, using infor-
mation from multiple frames to improve the reconstruction quality.
We propose two multiple-frame MFM image reconstruction algo-
rithms: batch and recursive approaches. In the batch approach, we
take multiple MFM frames and jointly estimate the 3D image and
the motion for each frame. In the recursive approach, we utilize
the reconstructed image from the previous frame. Experimental re-
sults show that the proposed algorithms produce a sequence of 3D
object reconstruction with high quality that enable reconstruction of
dynamic extended objects.

Index Terms— Multi-focus microscopy, 3D image reconstruc-
tion, total variation, multi-frame image reconstruction

1. INTRODUCTION

The conventional way to acquire a 3D image of the sample (i.e.,
the object) with a microscope is via sequential refocusing. Once a
focal stack of the object is captured, and given the point spread func-
tion (PSF) of the optical system, a 3D deconvolution is performed to
reconstruct the 3D object. However, sequential refocusing has seri-
ous disadvantages. It is too slow to accurately capture the dynamics
and the stage movement for refocusing can cause perturbation of the
sample. To overcome these limitations, Abrahamsson et al. devel-
oped the multi-focus microscopy (MFM) to capture multiple focal
planes as a single snapshot [1]. MFM uses a diffractive grating or
diffractive optical element (DOE) to split the light from different fo-
cal planes into separate paths and forms an array of images on the
camera.

Given a single MFM measurement, a 3D volume can be gen-
erated simply by stacking the sub-images with the alignment [1].
However, in this way, one can only reconstruct as many focal planes
as the number of sub-images, and the z spacing between the slices
is limited to the focal shift between two adjacent sub-images. Also,
it will suffer from the out-of-focus blur. Huang et al. proposed a
reconstruction method that uses a densely z-sampled 3D PSF com-
prised of these 2D depth-encoded MFM images [2]. This approach
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handles the out-of-focus blur and results in improved resolution in
the z-axis for single frame MFM images.

Because MFM is able to capture video of dynamic scenes,
we can make use of multiple frames to obtain a higher qual-
ity reconstruction. The same idea has been widely used in the
super-resolution (SR) literature, where the motion between differ-
ent frames is taken into account to complete sub-pixel informa-
tion [3–10]. Tsai and Huang first proposed to use multiple images
to obtain a high resolution (HR) image but only considered trans-
lational motion [3]. Farsiu et al. proposed a robust estimation
method by using l1 minimization and extended the motion model
to the affine transformation [4]. He et al. modeled the degradation
with a nonlinear function to represent motion with both rotation
and translation [5]. Belekos et al. used the maximum a posteriori
(MAP) framework for video SR [6] and Babacan et al. proposed
a variational Bayesian framework for multiple-frame SR [7]. Liu
et al. proposed a MAP based video SR method that jointly esti-
mates the HR image, blur, motion, and noise. They used an optical
flow algorithm to estimate local motion [8]. Recent learning-based
video SR methods also utilized an optical flow algorithm for motion
estimation [9, 10].

All the methods described above were developed for 2D image
SR. Here we extend multiple-frame (MF) image SR schemes to 3D
space to obtain a higher resolution along the z-axis in MFM. We
build on single frame MFM reconstruction approach in [2] and im-
prove the reconstruction using multiple frames. We propose two ap-
proaches for MF reconstruction: the batch approach which exploits
the multiple neighboring frames, and the recursive approach which
uses the 3D reconstruction obtained for the previous frames. The
proposed methods can also be applied to a broader range of inverse
problems with multiple observations, such as, 3D image reconstruc-
tion from conventional microscopy or uncalibrated tomography [11].

The paper is organized as follows. Single frame reconstruction
from [2] is summarized in Section 2 using notation consistent with
the rest of the paper. The MF reconstructions algorithms are intro-
duced in Section 3. Experimental results and discussion are provided
in Section 4 and we conclude our paper in Section 5.

2. SINGLE-FRAME MFM RECONSTRUCTION

2.1. Acquisition Model

Fig. 1 (a) illustrates our MFM system. The DOE splits the light from
different focal planes, forming K ×K tiles as shown in Fig. 1 (b).
Each tile corresponds with the image obtained for a different focal
plane. Because it is a linear spatially invariant system, its whole opti-
cal system can be characterized by its PSF. The 3D PSF is estimated
by sequential refocusing with a fixed fluorescent bead.
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(a) (b)
Fig. 1: Schematics and captured image of MFM.

Let f ∈ RNx×Ny×Nz , g ∈ RMx×My , and h ∈ RMx×My×Mz

denote a 3D object, its MFM measurement, and the 3D PSF of the
MFM, respectively. The acquisition process of MFM can be mod-
eled as the extraction of one plane (suppose z = 0) after 3D con-
volution of f and h, and equivalently as the sum of 2D convolu-
tions of f(x, y;−z) and h(x, y; z), plus additive Gaussian noise
ε ∈ RMx×My as

g(x, y) = h(x, y, z) ∗3D f(x, y, z)
∣∣
z=0

+ ε(x, y)

=

bNz/2c∑
z=−bNz/2c

h(x, y; z) ∗2D f(x, y;−z) + ε(x, y),
(1)

where ∗3D and ∗2D denote the 3D convolution and the 2D convolu-
tion operators, respectively. Eq. 1 can also be expressed in matrix-
vector notation as

g = Hf + ε (2)

where f ∈ RNxNyNz×1, g ∈ RMxMy×1, and ε ∈ RMxMy×1 are
vectorized f , g, and ε, respectively, and H ∈ RMxMy×NxNyNz

denotes the MFM PSF matrix.

2.2. Single-Frame Reconstruction (SFR)

To reconstruct a 3D object, f , when provided a MFM image, g, and
the MFM PSF matrix, H, we can formulate the inverse problem as
in [2]. Assuming Gaussian noise, a regularized least squares method
to reconstruct f is formulated as follows:

f̂ = arg min
f
‖g −Hf‖22 + λΦ(f), subject to f ≥ 0 (3)

where λ is a regularizing parameter, and Φ(·) is a regularizer func-
tion. In this paper we chose the 3D total variation (TV) regular-
izer because it encourages piecewise smoothness of the signal by
enforcing sparsity in the gradient domain. It is suitable for extended
objects, such as bacteria that we want to reconstruct. The TV regu-
larizer for a 3D object, f , is defined as

Φ(f) =
∑
i

√
(∆x

i f)
2 + (∆y

i f)
2 + (∆z

i f)
2 (4)

where i is a voxel index and ∆x
i f , ∆y

i f , and ∆z
i f denote first-order

difference operators in the x, y, and z directions, respectively. Eq. 3
is solved by employing the two-step iterative shrinkage/thresholding
(TwIST) algorithm [12] with the projected gradient scheme for the
non-negativity constraint. Note that the choice of the regularizing
parameter, λ, is important for the quality of reconstruction. If it
is too large or too small, it converges to a poor solution. In our
experiments, we performed an exhaustive search for this parameter
to obtain an optimal reconstruction.

3. MULTIPLE-FRAME MFM RECONSTRUCTION

Given a sequence of MFM images, we can use multiple MFM im-
ages to achieve a higher quality 3D reconstruction. We first describe

two acquisition models for MF MFM images and introduce two ap-
proaches for the MF MFM reconstruction. Here we assume that
there is a single rigid object in the sample space and model the mo-
tion as a rigid transformation that only includes 3D translation and
3D rotation.

3.1. Acquisition Model

The first model for the acquisition process describes a mapping from
a 3D object at k-th frame, fk ∈ RNxNyNz×1, to the captured MFM
image, gk ∈ RMxMy×1. Let H ∈ RMxMy×NxNyNz and εk ∈
RMxMy×1 denote the MFM PSF matrix and the noise in k-th frame
respectively. Then, the acquisition process is modeled as

gk = Hfk + εk. (5)

which is the same form as Eq. 2 in Section 2 for the SFR algorithm.
The acquisition model in Eq. 5 can be extended by considering the
relationship between frames as

gk = HMl,k(αl,k)fl + εl,k (6)

where αl,k and Ml,k(αl,k) denote the motion parameters for the
3D object from l-th frame to k-th frame and the warping matrix cor-
responding to αl,k, and εl,k is a Gaussian noise term. αl,k consists
of three parameters for 3D translation and three parameters for 3D
rotation since rigid transformation is assumed for the motion. Note
that, in this model, every MFM measurement originates from the
reference object, fl, through a geometric transformation and MFM
imaging with noise.

3.2. Batch Approach

Based on the acquisition model in Eq. 6, we suggest to use a batch of
MFM measurements to reconstruct one frame, fl, and we call it the
batch approach for MF reconstruction. We formulate the optimiza-
tion problem to estimate fl for the batch approach as

{f̂l, α̂l,k} = arg min
fl≥0,αl,k

l+m∑
k=l−m

‖gk −HMl,k(αl,k)fl‖22

+ λΦ(fl) + ω

l+m∑
k=l−m

‖αl,k‖22

(7)

where m is a positive number that determines the number of neigh-
boring frames used in the reconstruction, and ω is the regularizing
parameter for αl,k.

The first term in Eq. 7 is the data fidelity term based on the ac-
quisition model in Eq. 6. In principle, the whole sequence of MFM
image can be used for the reconstruction of fl, but it is computa-
tionally demanding and frames far in time can possibly degrade the
reconstruction quality due to large mis-registration error. Therefore,
we use a batch of frames around fl. The last term in Eq. 7 is a reg-
ularizer for the motion parameters. Since the motion between two
frames is small for a short period of time, we chose the l2 norm to
enforce small values for αl,k. ω is chosen empirically and is set to
small values.

The alternating descent scheme is applied to solve the multi-
variable non-convex problem of Eq. 7. We solve for fl while fixing
αl,k first, and then solve for the motion parameters set by set while
fixing fl and the other motion parameter sets. Note that in this ap-
proach we have 2m sets of motion parameters to estimate (αl,k for
k = l−m, · · · ,−1, 1, · · · , l+m). The alternation is repeated until
it converges.
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(a) (b)
Fig. 2: Simulated MFM images with a bacterium-like object with
Gaussian noise (σn = 0.02). (a) The object lies in the xy plane at
frame 3, and (b) stands along the z-axis at frame 21.

3.3. Recursive Approach

Based on Eq. 5, each frame can be reconstructed by the SFR method
as described in Section 2. For k = 1, · · · , S, it can be expressed as

f̂k = arg min
fk≥0

‖gk −Hfk‖22 + λΦ(fk). (8)

Here we can exploit the information from previous frames in a recur-
sive manner by using the 3D reconstruction data from the previous
frame. Since we assume the 3D object is rigid, we add a constraint
that the reconstruction at k-th frame should be the same as the re-
construction at (k − 1)-th frame under a rigid transformation as

{f̂k, α̂k−1,k} = arg min
fk≥0,αk−1,k

‖gk −Hfk‖22 + λΦ(fk)

+ η‖fk −Mk−1,k(αk−1,k)fk−1‖22,
(9)

where λ and η are the regularizing parameters for each regularizer
term, which can be chosen by exhaustive search.

Eq. 9 is a non-convex optimization problem with two unknown
variables, fk and αk−1,k. Similarly to the batch approach, we use
the alternating descent algorithm to solve for each variable in an al-
ternating fashion until convergence.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of single-frame re-
construction (SFR), multiple-frame batch approach (MF batch) and
multiple-frame recursive approach (MF recursive), on both synthetic
and real datasets.

4.1. Synthetic Experiment

For the synthetic experiment, a 3D image of a double-lobe bacterium
was acquired by using confocal microscopy. The 3D image is scaled,
cropped, and located in the center of the space of 50× 50× 51. 30
frames were generated by sequentially adding to each new frame a
rotation of 5◦ along the y-axis and 2◦ along the z-axis, and a 3D
random shift generated by multivariate Gaussian with mean 0 and
covariance matrix I3×3. Fig. 3 (a) and Fig. 4 (a) show the simulated
3D object at different frames. To visualize the 3D image more ef-
fectively, we used a colormap such that blue and red colors indicate
the lowest and the highest intensity respectively, and display three
projections onto the xy, yz, and zx planes as well. The object lies
along xy plane at frame 3, and stands along the z direction at frame
21. The obtained frames are used as ground truth in our experiments.

(a) (b)

(c) (d)
Fig. 3: Reconstructed 3D images at frame 3 with σn = 0.02.
(a) Ground truth, (b) SFR, PSNR:37.24, SSIM:0.9868, (c) MF
batch (m = 2), PSNR:38.13, SSIM:0.9887, (d) MF recursive,
PSNR:37.79, SSIM:0.9877.

To simulate the MFM acquisition model, each frame is degraded
according to Eq. 1, with a scaled version of the measured PSF. We
generated observations for two different standard deviation values
of the Gaussian noise σn = 0.01 and σn = 0.02. Fig. 2 shows the
simulated MFM images at different frames with σn = 0.02.

Figures 3 and 4 show the original and the reconstructed 3D im-
ages, with noise σn = 0.02, at frames 3 and 21 out of 30 frames.
For both frames, we observe that the reconstructions become elon-
gated along the z axis, which is caused by the missing cone problem
in microscopy imaging [13, 14]. Nevertheless, we can observe the
reconstructions are very similar to the ground truth, especially along
the xy plane. The quality between reconstruction methods is distin-
guished at frame 21 where SFR fails reconstructing the double lobe.
However, MF reconstruction approaches reconstruct the two lobes
as can be clearly seen in the projections. The reconstruction of MF
batch is better than SFR but it is visually noisier than MF recursive.

Table 1 summarizes the overall performance of the MFM recon-
struction algorithms in average peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM). The MF reconstruction meth-
ods improve the performance, and MF recursive results in the most
significant improvement in average. These numbers match the vi-
sual quality from Figs. 3 and 4. As the more neighboring frames are
used, MF batch results in better performance but with more intense
computation.

The plots in Fig. 5 show the PSNR values for all the frames.
They tell a few things about the reconstruction methods. First, the
MF approaches give better reconstruction compared to the SFR
method. The PSNRs of the MF approaches are higher than those of
the SFR method at most of the frames. Second, MF batch follows
the trend of the SFR, but produces higher quality reconstruction
than SFR by using multiple observation. The more observation,
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(a) (b)

(c) (d)
Fig. 4: Reconstructed 3D images at frame 21 with σn = 0.02.
(a) Ground truth, (b) SFR, PSNR:36.39, SSIM:0.9747, (c) MF
batch (m = 2), PSNR:38.80, SSIM:0.9835, and (d) MF recursive,
PSNR:40.97, SSIM:0.9866.

the better reconstruction. Third, the performance of MF recursive
depends on the previous reconstruction. The reconstruction quality
does not change as abruptly as the other methods frame by frame.
Because it encourages the reconstruction to be the same as previous
reconstruction, it tries to keep the 3D shape. In this way, it produces
more consistent 3D reconstruction over the sequence.

Table 1 also shows the average running time of the reconstruc-
tion in the unit of minute. The MF reconstruction algorithms takes
more time since they have more data to process and have to estimate
the motion between frames in addition to the 3D image in an itera-
tive manner. The batch approach uses (2m+ 1) times as much data
as SFR and also it has 2m sets of the motion parameters to estimate.
For the recursive approach, it adds as much data as the reconstruction
object for image estimation, and has one set of motion parameters to
estimate. Note that the time in the table for SFR does not include the
time for the exhaustive search for an optimal λ.

4.2. Real Experiment

A tumbling bacterium was captured with our MFM system [2]. The
frame rate was about 30 fps and the illumination time was 20 ms
per frame. The effective pixel size is 98nm × 98nm and the pixel

Table 1: Performance and running time of MFM image reconstruc-
tion algorithms. Average PSNR, SSIM, and running time are calcu-
lated over 26 frames. Running time is recorded in the unit of minute.

σn = 0.01 σn = 0.02
Methods PSNR SSIM Time PSNR SSIM Time

SFR 38.30 0.9868 1.12 36.47 0.9786 0.83
MF batch,m = 1 39.04 0.9899 19.97 37.31 0.9786 36.03
MF batch,m = 2 40.05 0.9919 49.58 38.17 0.9814 123.30

MF recursive 40.20 0.9897 4.36 39.57 0.9842 4.37

(a) (b)
Fig. 5: PSNRs for each frame, (a) σn = 0.01, (b) σn = 0.02.

(a) (b)

(c) (d)
Fig. 6: Reconstructed 3D images from the real data at frame 22 (a)
MFM measurement, (b) SFR, (c) MF batch approach, and (d) MF
recursive approach.

resolution of the camera is 1024× 1024. Fig. 6 (a) shows an MFM
image at frame 22.

For real data, the reconstruction results are evaluated by visual
quality. Fig. 6 shows the MFM measurement and the reconstruction
results with the three algorithms: SFR, MF batch, and MF recursive
at frame 22. While all three methods reconstruct the 3D image of
the bacterium that conforms to the size and the shape of the bacte-
ria that we already know, the MF reconstruction methods produce
sharper 3D images than SFR. Also, SFR becomes more sensitive to
the choice of λ for the real data so we tried up to 15 values of λ to
obtain reasonable reconstruction quality.

5. CONCLUSION

We have developed two multiple-frame (MF) 3D image reconstruc-
tion algorithms for MFM: MF batch, and MF recursive. Our meth-
ods outperform the single-frame reconstruction, achieving higher
quality image reconstruction in axial super-resolution. MF batch
uses a batch of neighboring MFM images for reconstruction while
MF recursive utilizes the reconstructed 3D image from the previous
frame. Experimental results with both synthetic and real data show
the effectiveness of our methods.
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