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ABSTRACT

Outdoor images captured in poor weather conditions (e.g., fog
or haze) commonly suffer from reduced contrast and visibil-
ity. Increasing attention has recently been paid to single im-
age dehazing, i.e., improving image contrast and visibility. It
is generally thought that the dehazing performance highly de-
pends on the accurate depth information. In this work, we first
obtain the initial depth map by using the popular dark channel
prior. A unified second-order variational framework is then
proposed to refine the depth map and restore the haze-free im-
age. The introduced second-order framework has the capac-
ity of preserving important structures in both depth map and
haze-free image. Furthermore, the proposed framework per-
forms well for several different types of haze situations. The
resulting optimization problems related to depth map estima-
tion and latent image restoration can be effectively handled
using the primal-dual algorithm under a two-step numerical
framework. The effectiveness of our proposed method has
been demonstrated by comparing the imaging performance
with several state-of-the-art dehazing methods.

Index Terms— Image dehazing, depth map, variational
method, total generalized variation, primal-dual algorithm

1. INTRODUCTION

Outdoor images captured in foggy or hazy weather conditions
commonly suffer from reduced contrast and visibility since
the light is easily attenuated and scattered by suspended parti-
cles. The reduced vision quality can result in negative effects
in practical applications, such as navigation, vision sensing,
remote sensing and traffic surveillance, etc. Increasing atten-
tion has been paid to single image dehazing [1], i.e., improv-
ing image contrast and visibility. Given the current state-of-
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the-art dehazing progress, the popular methods can be mainly
categorized into two types: enhancement-based methods and
physics-based methods. Methods of the first type including
typical retinex [2] and histogram-based method [3] have been
widely utilized. However, these methods do not take into
account the image degradation mechanism leading to unsta-
ble dehazing performance. Utilization of dark channel prior
(DCP) [4] has become one of the most popular and success-
ful physics-based dehazing methods. It is assumed that most
local non-sky patches in haze-free images have pixel values
close to zero. DCP-based hazing performance has been fur-
ther improved [5, 6]. DCP-based method easily performs un-
satisfactorily in sky regions since the prior is only suitable
for non-sky regions. Sky detection and segmentation tech-
niques have been incorporated into traditional dehazing meth-
ods [7, 8]. Current research [9] has shown that pixels in a
haze-free image can be well approximated using color lines
in RGB space. Thus, methods [10, 11] using color lines have
improved dehazing performance and gained increasing atten-
tion. Haze-relevant features [12] have also contributed to de-
hazing improvement. More recently, powerful deep learning
technique [13, 14] has made great progress in accurate estima-
tion of medium transmission for improving dehazing quality.

Most existing dehazing methods are performed based on
the pre-estimation of depth information (or medium trans-
mission). It is generally thought that the dehazing perfor-
mance highly depends on the accurate depth information (or
medium transmission). To guarantee high-quality dehazing,
it is necessary to accurately estimate the depth information
(or medium transmission) during image dehazing. Fang et
al. [15] proposed a total variation (TV)-regularized varia-
tional framework to simultaneously estimate depth map and
haze-free image. TV regularizer is able to preserve the main
edges for both depth map and latent sharp image. TV has also
been adopted to refine medium transmission to improve the
visibility of hazy images [16, 17]. However, TV-based meth-
ods often tend to generate staircase-like artifacts in homoge-
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neous regions since they favor piecewise constant solutions.
As a natural extension of TV regularizer, the total generalized
variation (TGV) regularizer of second-order [18, 19] has the
capacity of suppressing staircase-like artifacts while preserv-
ing fine structures. To further improve dehazing performance,
there is a great potential to replace TV by TGV to constrain
the estimation of both depth map and haze-free image.

In this work, a TGV-based variational framework is pro-
posed to simultaneously estimate depth map and haze-free
image. The main benefit of the proposed framework is that
it takes full advantage of the detail-preserving TGV regular-
izer. Therefore, our dehazing method is capable of preserving
the geometric structures for both depth map and haze-free im-
age. In addition, different types of haze situations could also
be effectively handled using our method in experiments.

2. PROBLEM FORMULATION

By Koschmieder’s law [1], the mathematical formation of a
hazy image can naturally be described as follows

L(x) = J(x)e−kd(x) + A
(

1− e−kd(x)
)
, (1)

where L(x) is the apparent luminance at pixel x ∈ Ω with
Ω being image domain; J(x) is the haze-free image to be es-
timated; A is the atmosphere light, which is assumed to be
globally constant; k is the extinction coefficient of the atmo-
sphere and d(x) denotes the depth of scene. For the sake of
convenience, all pixel values of the observed image L in this
work are projected into the interval [0, 1]. The original imag-
ing model (1) can be rewritten as follows

−1

k
log (A− L(x)) = −1

k
log (A− J(x)) + d(x), (2)

for x ∈ Ω. For the sake of better reading, the index x will
be omitted in the rest of this paper. Let g = − 1

k log (A− L)
and f = − 1

k log (A− J), it is easy to obtain that both g, f ∈
[0,+∞). The estimation of haze-free image J in Eq. (1) is
equivalent to solving the following pseudo denoising problem

g = f + d, (3)

which aims to simultaneously estimate noise-free image f and
depth map d given the observed data g and pre-estimated at-
mosphere light A. It is assumed that f still contain the piece-
wise affine structures existed in latent sharp image L. To
guarantee the dehazing performance, the second-order TGV
regularizer on f is adopted to preserve small-scale structures
such as sharp edges. In current literature, TV regularizer has
been widely used to estimate the depth map d. However, TV
favors piecewise constant solutions, thus the resulting depth
map easily suffers from the staircase-like artifacts. It is clear
that TV can be regarded as a special case of TGV. To improve
the estimation accuracy, the depth map d is also regularized
using TGV constraint because the essential limitations of TV
could be significantly suppressed accordingly.

Algorithm 1 Primal-dual algorithm for Step 1

1: Input: g, dt, α̃1, α̃0, δ̃, τ̃ and λ̃ = 1/λ1.
2: while j ≤ Jmax do
3: ũj+1 = projŨ

(
ũj + δ̃

(
∇f̃ j − w̃j

))
,

4: ṽj+1 = projṼ

(
ṽj + δ̃

(
E
(
w̃j
)))

,

5: f j+1
t =

τ̃ λ̃(g−dt)+f̃jt +τ̃div(ũj+1)
1+τ̃ λ̃

,

6: wj+1
1 = wj

1 + τ̃
(
ũj+1 + divh̄

(
ṽj+1

))
,

7: f̃ j+1 = 2f j+1
t − f jt , w̃j+1 = 2wj+1

1 −wj
1.

8: end while
9: Output: ft+1 ← fJmax

t .

Algorithm 2 Primal-dual algorithm for Step 2
1: Input: g, d0, ft+1, ᾱ1, ᾱ0, δ̄, τ̄ and λ̄ = (1 + µ)/λ2.
2: while j ≤ Jmax do
3: ūj+1 = projŪ

(
ūj + δ̄

(
∇d̄j − w̄j

))
,

4: v̄j+1 = projV̄
(
v̄j + δ̄

(
E
(
w̄j
)))

,

5: dj+1
t =

τ̄ λ̄((g−ft+1+µd0)/(1+µ))+d̄j
t+τ̄div(ūj+1)

1+τ̄ λ̄
,

6: wj+1
2 = wj

2 + τ̄
(
ūj+1 + divh̄

(
v̄j+1

))
,

7: d̄j+1 = 2dj+1
t − djt , w̄

j+1 = 2wj+1
2 −wj

2.
8: end while
9: Output: dt+1 ← dJmax

t .

2.1. Joint Depth Map Estimation and Image Dehazing

Motivated by the advantage of TGV regularizer, a unified
variational model for simultaneously estimating f and d from
(3) is defined as follows

min
f ,d

{1

2
‖g − (f + d)‖22 + λ1TGV2

α̃ (f) (4)

+ λ2TGV2
ᾱ (d) +

µ

2
‖d− d0‖22

}
.

where λ1, λ2 and µ are predefined positive regularization
parameters, d0 is the initial estimation of depth map used to
stabilize the final estimation. In this work, d0 was obtained
through the medium transmission map t(x) = e−kd(x), which
could be simply estimated using the dark channel prior [4],
i.e., t(x) = 1 − ωminc

(
miny∈Ω(x)

(
Lc(x)
Ac

))
with a prede-

fined parameter ω = 0.95 and a 15×15 region Ω (x) centered
at x. Among the pixels which belong the top 0.1% brightest
intensities in the dark channel [4], the pixels with the highest
magnitude in L are selected as the atmospheric light A. The
discretized TGV2

α̃ (f) in (4) is defined as TGV2
α̃ (f) =

mine {α̃1 ‖∇f − e‖1 + α̃0 ‖E (e)‖1} with α̃1 and α̃0 being
positive parameters. The symmetrized derivative operator E is

given by E (e) =

[
∂xe1

1
2 (∂ye1 + ∂xe2)

1
2 (∂ye1 + ∂xe2) ∂ye2

]
with e = [e1 e2]

T being a complex-valued vector field. The
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Fig. 1. Comparison of dehazing results on one test image (degraded by 4 different types of haze) from [26]. From left to right:
(a) original image, (b) hazy image, restored images generated by (c) Tarel-Hautiere [22], (d) He et al. [4], (e) Ancuti-Ancuti
[23], (f) Zhu et al. [24], (g) Chen et al. [25] and (h) ours. (The images are best viewed in full-screen mode.)

definition of TGV2
ᾱ (d) can be obtained in the same manner,

i.e., TGV2
ᾱ (d) = minc {ᾱ1 ‖∇d− c‖1 + ᾱ0 ‖E (c)‖1}.

Due to the nonsmooth nature of TGV regularizer, it is com-
putationally intractable to simultaneously obtain f and d via
commonly-used numerical methods. It is obvious that the
updates of variables f and d in (4) are independent of each
other. To achieve a stable numerical solution, the nonsmooth
convex minimization problem (4) will be effectively solved
using a two-step optimization algorithm.

2.2. Numerical Optimization Algorithm

The optimization of original convex minimization problem
(4) can be decomposed into the following two steps

Step 1 : ft+1 = min
f

{ λ̃
2
‖(g − dt)− f‖22 + TGV2

α̃ (f)
}
,

Step 2 : dt+1 = min
d

{ λ̄
2
‖(g − ft+1 + µd0)/(1 + µ)− d‖22

+ TGV2
ᾱ (d)

}
,

for t = 0, 1, · · · , T . Here, λ̃ = 1/λ1 and λ̄ = (1 + µ)/λ2.
Optimizations of Step 1 and 2 will be implemented alternately
until the solution converges to the optimal one. In this work,
the resulting optimization problems will be solved using the
primal-dual algorithm of Chambolle-Pock [20, 21]. Taking
the optimization problem of Step 1 as an example. The related
dual formulation of this primal problem is given by

min
f ,w̃

max
ũ∈Ũ,ṽ∈Ṽ

{ λ̃
2
‖f − (g − dt)‖22+〈∇f−w̃, ũ〉+〈E (w̃) , ṽ〉

}
with ũ and ṽ being dual variables. The convex variable sets
Ũ and Ṽ are given by Ũ = {ũ = (ũ1, ũ2) | ‖ũ‖∞ ≤ α̃1}

and Ṽ =

{
ṽ =

(
ṽ11 ṽ12

ṽ21 ṽ22

)
| ‖ṽ‖∞ ≤ α̃0

}
. There-

fore, the primal-dual algorithm for optimization of Step 1 is

detailedly summarized in Algorithm 1. The Euclidean pro-
jectors projŨ (ũ) and projṼ (ṽ) are defined as projŨ (ũ) =

ũ
max(1,|ũ|/α̃1) and projṼ (ṽ) = ṽ

max(1,|ṽ|/α̃0) , respectively.

The definitions of divergence operators div (ũ) and divh̄ (ṽ)
are given by div (ũ) = ∂−1

x ũ1 + ∂−1
y ũ2 and divh̄ (ṽ) =(

∂−1
x ṽ11 + ∂−1

y ṽ12, ∂
−1
x ṽ21 + ∂−1

y ṽ22

)T
. Similarly, Algo-

rithm 2 displays the primal-dual algorithm for the optimiza-
tion of Step 2. Analogous to the projŨ (ũ), projṼ (ṽ),
div (ũ) and divh̄ (ṽ), the definitions of projŪ (ū), projV̄ (v̄),
div (ū) and divh̄ (v̄) could be easily obtained. The param-
eters δ̃ = τ̃ = δ̄ = τ̄ = 1/

√
12 are predefined to en-

hance the convergence of primal-dual algorithms. Once the
logarithmic-type image f is obtained, it is easy to yield the
haze-free image J according to Eqs. (2) and (3), i.e.,

J = A− e−kf , (5)

with k = 1 for all results reported in this work.

3. EXPERIMENTS AND DISCUSSION

Comprehensive experiments were implemented on both syn-
thetic and realistic images to compare our method with sev-
eral popular dehazing methods, i.e., Tarel-Hautiere [22], He
et al. [4], Ancuti-Ancuti [23], Zhu et al. [24] and Chen
et al. [25]. In all numerical experiments, we manually se-
lected the optimal parameters λ1 = 1 × 102, λ2 = 5 × 101,
α̃1 = ᾱ1 = 1 × 10−1, α̃0 = ᾱ0 = 2 × 10−1, µ = 5 × 10−1

and Jmax = 20 for our proposed method. Experimental re-
sults have demonstrated the effectiveness of these manually-
selected parameters under different imaging conditions. For
the sake of better comparison, the competing methods gener-
ate the most satisfactory dehazing results with the best tuning
parameters optimized by the authors.
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Fig. 2. Comparison of dehazing results on realistic images.
From left to right: (a) hazy image, restored images yielded by
(b) Tarel-Hautiere [22], (c) He et al. [4], (d) Ancuti-Ancuti
[23], (e) Zhu et al. [24], (f) Chen et al. [25] and (g) ours.

Table 1. Comparisons of average PSNR/SSIM results for sev-
eral different dehazing methods on synthetic dataset [26].
Methods Haze 1 Haze 2 Haze 3 Haze 4
Tarel-Hautiere [22] 11.54/0.672 9.27/0.548 9.37/0.511 11.40/0.726
He et al. [4] 12.54/0.574 9.69/0.401 9.68/0.372 12.56/0.623
Ancuti-Ancuti [23] 11.16/0.588 11.80/0.482 11.97/0.479 11.00/0.689
Zhu et al. [24] 11.17/0.516 11.86/0.459 11.85/0.429 11.09/0.556
Chen et al. [25] 11.64/0.551 12.04/0.493 12.01/0.465 11.53/0.586
Ours 12.81/0.654 12.53/0.560 12.49/0.525 12.81/0.704

3.1. Synthetic Experiments

Synthetic experiments were performed on the popular FRIDA2
dataset with a total of 264 hazy images [26]. This dataset
contains 66 original images of size 640 × 480 degraded by 4
different types of haze. Both PSNR and SSIM metrics were
selected to assess the competing dehazing methods.Table 1
depicts the quantitative results (i.e., average PSNR and SSIM
values) for different dehazing methods under 4 different
types of haze. It could be found that our method outperforms
other competing methods under consideration in most of the
cases. Tarel-Hautiere [22] could sometimes generate the best
quantitative results but often leads to the poorest dehazing
performance. In contrast, our method is able to robustly
perform dehazing under different imaging degradation condi-
tions. The advantage of our method is further confirmed by
the visual results shown in Fig. 1. As shown by the red square
regions, the proposed method could restore more geometrical
structures resulting in improved image quality.

3.2. Realistic Experiments

This subsection evaluates the dehazing performance on sev-
eral realistic degraded images. Fig. 2 compares our results to
state-of-the-art single image dehazing methods [4, 22, 23, 24,
25] on natural images. The methods of Tarel-Hautiere [22],
He et al. [4], Ancuti-Ancuti [23] and Chen et al. [25] easily
leave haze in the results, as shown in the color square areas.
Zhu et al. [24] and our method could effectively remove the
haze and enhance the image quality. From the cityscape im-
ages in Fig. 3, we can visually find that Zhu et al. [24] suffers

Fig. 3. Comparison of dehazing results on cityscape images.

Fig. 4. Comparison of dehazing results on hill images with
large sky regions.

from the remaining haze leading to image quality degrada-
tion. Chen et al. [25] tends to oversmooth the fine-scale im-
age structures. In contrast, our method has the capacity of
effectively remove the haze while preserving the image de-
tails. Its good performance mainly benefits from the detail-
preserving TGV regularizer. Dehazing results in Fig. 4 have
also demonstrated the superior performance of our method for
hill images with large sky areas. The satisfactory estimations
of depth map are visually illustrated in Figs. 3 and 4.

4. CONCLUSIONS

In this paper, we proposed a unified second-order variational
framework to simultaneously perform depth map estimation
and haze-free image restoration. The introduced second-order
regularizer was able to preserve the important structures in
depth map and latent image assisting in improving image con-
trast and visibility. To guarantee stable solutions, a two-step
numerical framework was introduced to effectively deal with
the nonsmooth optimization problems related to depth map
estimation and latent image restoration. Experiments on both
synthetic and realistic images have been implemented to il-
lustrate the satisfactory performance of our method in terms
of quantitative assessment and visual quality. It should be
pointed out that the proposed method performs image dehaz-
ing on each channel and combines the restored channels into
a color image. To further enhance dehazing performance, the
multichannel version of TGV [27] can be extended to con-
strain the latent sharp image f in Eq. (4) in our future work.
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