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ABSTRACT 

In this paper, we put forward and demonstrate a novel 

method in image and video detail enhancement-- in-place 

residual homogeneity (IP). In-place residual homogeneity is 

a regular law we find in testing different blocks in database, 

that is, residual blocks with slight different resolutions hold 

homogenous structures. By learning this homogeneity, we 

guess that it might be a good description of image’s detail 

layer. Then images are enhanced by designed framework 

and accelerated by proposed fast in-place search method. 

Unlike most algorithms that need to adjust parameters by 

manual to get best performance, our approach is adaptive. 

Besides, many algorithms will change images’ intensity, but 

our IP can keep natural images from over enhancement. 

Moreover, IP is also robust to low bit rate H.265 encoder 

and decoder system and runs faster than most popular 

methods. The last but not least, it can be easily FPGA 

implemented as well. Numbers of experiments testify that 

our algorithm is robust with good performance both 

subjectively and objectively. 

 
Index Terms— In-place residual homogeneity, detail 

enhancement, fast in-place search, FPGA implemented. 
 

1. INTRODUCTION 
 
With development of information technology, billions of 

digital images are created every day. But many image 

details are degraded by noise or resolution limitations, so 

detail enhancement algorithm is highly required.  Many 

algorithms are proposed to improve this problem. Bilateral 

filter [1] is a classical filter, though it’s effective in many 

situations, it may have unwanted gradient reversal artifacts 

[2], [3]. He et al proposed a guided filter [2] and [3], it has 

better behaviors near edges and enables applications like de-

hazing and matting. Li et al [4] proposed an l0-based filter 

that can improve halo artifacts.  Fattal et al [5] used global 
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optimization based filters, getting multi-scale detail exaction 

under weighted least squares optimization, which is called 

WLS filter. It reduces de-blurring artifacts of [1], [2] and [3], 

providing an excellent foundation. Kou et al [7] proposed a 

new l0-based algorithm, preserving sharp edge better. Xu et 

al [8] recovered details by analyzing scale in-variance of 

fractal dimension, extending to true texture enhancement. In 

this paper, we present a novel detail enhancement method 

via learning in-place residual homogeneity, that is, residual 

images with slight different resolutions are structure 

homogenous. There exist two procedures in our algorithm, 

fast in-place search and block match.  

 
 

2. IN-PLACE RESIDUAL HOMOGENEITY OF 
IMAGE  

 
2.1 Definition of in-place residual homogeneity 
 
Given the original image L0, we can get L1=β×L0 and 

L2=(1/β)×β×L0 using bi-linear [1], where β is set as 1.25. 

Bi-linear in [1] is a loss interpolation method, so L0 and L2 

are not exactly same, we define H0= L0L2 as residual part 

of L0. As we can see in Fig. 3, L0 and L1 are with 

homogenous structure. So block [x: x+m, y: y+n] in L0 have 

a strong probability to be homogenous with one of blocks 

[βx +p: βx+p+m, βy+t: βy+t+n] in L1, where p and t are 

offset numbers ranging from -2 to 2. If H1 is generated the 

same way as H0, that is, H1=L1 (1/β)×β×L1, the structure 

between H1 and H0 should be homogenous, so H1 and H0 

must be satisfied with H1 [βx+t: βx+t+m, βy+p: βy+p+n] ≈ 

H0 [x: x+m, y: y+n], which we call this in-place residual 

homogeneity, revealing facts that most homogenous 

residual blocks in H0 exist just in restricted areas of H1.  

 
Definition:  
For image X, block X1=X [x: x+m, y: y+n] in X, block X2 = 
βX (t, p)= βX [βx+t: βx+t+m, βy+p: βy+p+n] in βX, if 
min{SAD(X1, X2)}<threshold, X1 is in-place homogenous 
with X2, that is X1 ~ X2, where threshold is set as 4mn. 
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Fig. 1 Details of in-place residual homogeneity 
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Fig. 2.  Image in-place residual similarity statistics 

 
To evaluate such IP, we divide H0 into 4×4 sub blocks, then 

search H0 to find their match blocks in database and count 

search times. Besides, we also apply IP to find H0’s match 

blocks in H1. For example, for all sub blocks in image kola, 

we search 1.2×106 times in database, but 106 search times 

among them are unnecessary. Match blocks just locate in 

their corresponding in-place homogenous areas in H1. Fig. 2 

shows that average in-place residual similarity in test is 93%. 

 
2.2   In-place homogeneity between L1 and L2 
 

Suppose PL0=L1, QL1=L2, H0=L0－L2, L1－P’Q’L1=H1, 
where P and Q, P’ and Q’ are up-scale and down-scale 
matrix with different rows and columns. According to our 
experiment, H0 and H1 are in-place residual homogenous, 
that is to say, H0 [x: x+m, y: y+n] ~βH0 = H1 [βx+t: βx+t+m, 
βy+p: βy+p+n]. With these conditions, conclusion can be 
drawn that in-place homogeneity exists between L1 and L2. 
The proof is as follows:  

H0 ~ H1 ⇒ H0 [x: x+m, y: y+n] = H1 [βx+t: βx+t+m, 
βy+p: βy+p+n], βH0⊂ H1 ⇒ βH0~H1 ⇒ H0~βH0~H1 ⇒(I
－PQ)-1 H0 ~ (I－PQ)-1 βH0 ~ (I－P’Q’)-1 H1.   

L2= L0－H0= ((I－PQ)-1－I) H0 ≈ (I+PQ+ PQ2－I) H0 

= (PQ+ PQ2) H0 ~ (I+ PQ+ PQ2) H0  ≈ (I－PQ)-1 H0 ~ (I－
P*Q*)-1 H1 = L1 ⇒ L2 ~ L1 ⇒ L2 [x: x+m, y: y+n] = L1 

[βx+t : βx+t+m, βy+p: βy+p+n], where in demonstration 
above, I is identity matrix, and eigenvalues of PQ are small, 
(I－PQ)-1 ≈  I+PQ+PQ2. 
 

3. FAST IN-PLACE SEARCH  
 
In order to avoid unnecessary search, accurate search is full 
of great importance. In this paper, we put forward a fast in-
place search method between L1 and L2. L0 is up-scaled to 
get L1 then down-scaled to acquire L2, due to demonstration 
above, L2 is seen as an in-place homogenous part of L1. So 
L1 [βx+t : βx+t+m, βy+p: βy+p+n] ≈ L2 [x: x+m, y: y+n]. 
As Fig. 3 shows, only four nearest neighbor pixels of 5×5 
match block in L1 are used For instance, if a pixel locates at 
coordinate [2, 2] in L2, β=1.25, 2×1.25=2.5, the most in-
place homogenous pixel has a very large probability 
locating between [2, 2] and [3, 3].  

 
 
Fig. 3. Fast in-place search  

 
To get accurate position of best pixel in four in-place 
candidates, function (1) must be solved.  
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,where X is the best location of four candidates [△x, △y]. 
Let [a, b] and [c, d] be start search point in L2 and L1. Block 
in H0 can be transferred from [a-1: a+1, b-1: b+1] to [c+△x-
1: c+△x+1, d+△y-1: d+△y+1], generating a new H1, thus 
in-place residual homogeneity between H0 and H1 is 
preserved in this way. Popular methods based on operators 
will lead to image blurring, but the detail of H1 based on IP 
is well protected. To evaluate performance of our fast in-
place search, we compare it to full search and ways in [6]. 
Table 1 shows average running time and reduced PSNR 
value of the first 300 frames in selected 720p videos. It can 
be seen that our method is much faster with tiny quality loss.  

Table 1: Video running time and reduced PSNR 

Selected 
videos 

[6]’s time Our 
time 

Reduced  
time 

Reduced  
PSNR  

Foreman 9.54s 0.64s 79.28% -0.074dB 
Football 9.77s  0.68s 76.97% -0.065dB 
Mobile 9.65s 0.64s 79.35% -0.078dB 
Tennis 10.21s 0.59s 80.31% -0.083dB 
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4 RESULTS AND DISCUSSION 
 
4.1 System schematic diagram 
 
The system schematic diagram is shown in Fig. 4. First, in-

place residual homogeneity between H0 and H1 is found in 

our research. Second, fact is testified that in-place 

homogeneity also exists in L1 and L2. Third, we protect 

homogenous residual blocks in H0 and H1, and design this 

framework, and image Lenhance= L0 +α Detail is stand for 

final enhanced result, where α = 2 in this paper.  
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Fig. 4. System of in-place residual homogeneity 

 

4.2 Subjective experimental processing result 
 
To demonstrate performances of our IP, methods in the 
experiment are implemented in MATLAB 2013a and they 
are run on an Intel Core(TM) i7 CPU 3.4GHz machine. Fig. 
5 illustrates five examples based on [2], [3], [5] and our IP. 
Parameter r and eps in [2], [3] are set as 10 and 0.01, and 
parameters in [5] are set as follows. (val0=2, val1=1, val2=1, 
exposure=1, saturation= 1.1, gamma=1). Comparing to 
mainstream algorithms including guide image filter [2], [3], 
weighted least square filter [5], l0-based method [6] and [7], 
the proposed approach has three advantages. First, image 
signal parameters in [3], [4] and [5] are set globally, thus 
they are not suitable for different image contents. 
Parameters must be changed to get best performance by 
manual. However, our algorithm utilizes in-place 
homogeneity in image itself and it is robust to most image 
styles. Second, our algorithm keeps images from being over 
enhanced, which are serious in results of [2], [3], [5]. They 
always change image intensity. However, intensity in our IP 
is not changed and results are more visible. Third, our 
method is low complexity yet powerful. It can also be used 
in FPGA applications. [4], [5], [6] and [7] all contain 
complex operations or optimization regulation terms, so all 
of them cannot be easily hardware implemented. But our 
method is suitable for practical applications. Fig. 6 show 
two group images and their corresponding objective 
intensity curves. Each group has four images including 
original image, result of GF [2], [3], WLS [5] and our IP. 

They are marked with four different color lines respectively, 
whose width is one pixel, and values of these lines are 
regarded as y-axis of coordinate. From four intensity curves, 
we can see that curves of [2], [3] and [5] sometimes deviate 
from original image signals, where happened in over 
enhanced regions, but our curves follows closely to curve, 
It’s proved our IP is a texture true enhancement method.  
 

 
 
Fig. 5. Experimental results of GF  [2], [3], WLS  [5], and Our IP  

 

4.3 Objective intensity curve 
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Fig. 6. Objective intensity curves, The red, pink, black, blue line 
refer to original image, GF[2], [3], WLS[5], and our IP(in-place 
method) respectively 

 
4.4 Robust to low bit rate H.265 encoder and decoder 
 

H.265 video standard is widely used in video coding and 

transmission. Low bit rate H.265 encoder might ignore 

image detail to meet the demand of transmission bandwidth, 

that is to say, if an enhanced video flows in a low bit rate 

H.265 encoder and flow out from a H.265 decoder, whose 

detail will suffer a great loss. But our IP is adaptive to that. 

PSNR loss of our method is almost negligible. Moreover, 

image detail enhancement is a kind of traditional image 

processing algorithm. If it can be well embedded in H.265 

system, it must be full of great value. We cut out first 300 

frames in video Life of PI.yuv (720p) to test IP algorithm. 

The left and right side of black line are input video and 

enhanced video after 2M/s H.265 systems respectively. 

Furthermore, average PSNR loss of these frames is 0.087dB, 

it can be almost negligible. 

 
4.5 Another faster version  
 
To cater to fast application, we simplified our model to a 
faster version, which we call it IP2, as Fig. 7 shows. Unlike 
proposed IP algorithm, the module based on in-place 
homogeneity is used only once, resulting in a nearly twice 
faster algorithm. Having test the intensity curve of IP2 
system, it does not perform well enough as GF [2], [3] and 
WLS [5]. However, for images or videos with great demand 
in fast speed, IP2 algorithm might be a good choice. Table 2 
shows running time of each algorithm. Method WLS 
sometimes fails in high resolution formats like 2K due to its 
high computation, our IP and IP2 is robust at popular 

existing video formats. The last but not least, both IP and 
IP2 are faster than algorithm [2], [3], and [5].  
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Fig. 7 Faster version algorithm, IP2 

Table 2: Different algorithms’ running time 

Images Format GF/s WLS/s Our IP/s Our IP2/s 
Mickey CIF 0.12 1.04 0.09 0.05 
Child CIF 0.14 1.07 0.10 0.06 
Lena 512×512 0.56 3.02 0.32 0.18 
Pepper 512×512 0.58 3.12 0.35 0.19 

Plane 720p 2.73 23.12 1.76 0.86 
Tulips 720p 2.24 17.43 1.56 0.78 
Kangaroo 1080p 4.08 35.56 2.68 1.45 
Chips 1080p 4.13 36.33 2.84 1.57 
Harbor 2K 8.55 × 5.91 2.97 
Building 2K 8.74 × 6.05 3.44 

 
 

5 CONCLUSIONS 
 

In this paper, we propose and demonstrate a novel method 
in image detail enhancement. It is based on in-place residual 
homogeneity (IP). We get an idea in our research statistics. 
Images are enhanced and accelerated by IP framework and 
fast in-place search. Fig. 5 and Fig. 6 indicate final output 
images are more natural looking with minimum average 
distance in intensity curve comparing to original images’ 
edge regions, meaning that IP is a texture true enhancement 
approach with best edge preserving ability. Moreover, IP is 
robust to low bit rate H.265 encoder and decoder, with tiny 
PSNR loss in sample tests. Furthermore, we offer a faster 
version of IP called IP2. Table 2 tells us that both IP and 
IP2 are faster than traditional methods. The last but not least, 
IP itself is easily hardware implemented with practical value, 
resulting in both subjective and objective improvement. 
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