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ABSTRACT

This paper first introduces several unbiased distances to mea-
sure the similarity between image pixels and between image
patches. Based on these unbiased distances, we propose
a new non-local means denoising method, named Unbi-
ased Distance based Non-local Fuzzy Means (UDNLFM).
UDNLFM considers the weight as a fuzzy variable and up-
dates its value in each denoising iteration. Experiments and
comparisons demonstrate that UDNLFM outperforms state-
of-the-art non-local means methods for image denoising.

Index Terms— Image denoising, non-local means, non-
local fuzzy means, unbiased distance

1. INTRODUCTION

Since noise is unavoidable in image acquisition and transmis-
sion, image denoising becomes an essential step before fur-
ther processing. It aims at removing the noise effectively and
also performing well in detail preservation.

Recently, numerous denoising methods have been ad-
vanced to reduce Gaussian noise. Examples include block-
matching and 3D filtering [1], non-local Bayes [2], principal
component analysis with local pixel grouping [3], non-local
dual image denoising [4], progressive image denoising [5]
and patch-based multiscale products algortithm [6]. Among
denoising methods, Non-local Means (NLM) [7–9] was first
introduced by Buades et al. and it attracted lots of attention.
NLM uses image patch as a unit and is more robust in im-
age denoising, because image patch contains more structure
information of an image than pixels.

The principle of NLM is to calculate the weighted aver-
age of all neighbour patches in a given search window. The
weight measures the similarity between two patches. Given a
noisy image as Y, it can be expressed as a linear combination
of a clean image X and a noise model N

Y = X + N. (1)
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Firstly, NLM calculates the weight ωij for each pixel in a
search window Si,

ωij = exp(−
||Yi − Yj ||2

h2
), (2)

where j ∈ Si. Yi and Yj are noisy patches located at i and
j of Y. h is the smoothing parameter. NLM then obtains the
target patch X̂i as

X̂i =

∑
j∈Si

ωijYj∑
j∈Si

ωij
. (3)

X̂i is an image patch centered at i of denoised image X̂.
Due to its robustness in removing Gaussian noise, many

NLM-based methods were proposed, such as non-local Eu-
clidean medians (NLEM) [10], improved NLEM (INLEM)
[11], Probabilistic NLM (PNLM) [12] and NLM with local
James-Stein type center pixel weights (LJS-NLM) [13]. NLM
and its improvements consider weight wij as a constant. That
means they only calculate ωij once and keep it unchanged
during later iterative denoising processes. This is improper
because the denoised image and patch similarity will change
after each iteration. To address this issue, non-local fuzzy
means (NLFM) [14] was proposed. NLFM considers weight
ωij as a fuzzy variable and iteratively updates its value along
with denoised image after each denoising iteration. However,
its denoising performance is not promising due to the fact that
Euclidean distance has limitation to measure the similarity be-
tween two image patches.

In this paper, we propose three unbiased distances,
namely pixel-pixel unbiased distance, patch-patch unbiased
distance and combined unbiased distance. They are robust
to measure the similarity between image pixels or between
patches. Then we propose Unbiased Distance based NLFM
(UDNLFM). Similar to NLFM, UDNLFM considers weight
ωij as a variable and updates its value in each denoising itera-
tion via computing the combined unbiased distances between
patches. Experiments have shown that UDNLFM is robust to
remove Gaussian noise and superior to several NLM-based
methods with respect to quantitative measure and visual qual-
ity of denoised image.
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2. PROPOSED METHOD

After reviewing the optimization models of several existing
denoising methods, this section proposes three unbiased dis-
tances to measure the similarity between pixels or pathces,
then presents the proposed Unbiased Distance based NLFM
(UDNLFM) for image denoising.

2.1. Optimization Models

As NLM aims at finding the optimal target patch in a given
search window, we can transform this process into an opti-
mization problem [11]. The optimization models of several
denoising methods are listed in Table 1. The related NLM-
based methods are traditional NLM, NLEM, INLEM, PNLM
and NLFM. Table 1 also lists the optimazation models of de-
noising filters, such as mean filter, Gaussian filter and median
filter. In this table, X̂(i), X(i) and Y(j) are the i/jth pixel of
denoised image (or target image) X̂, clean image X and noisy
image Y, respectively. X̂i, Xi and Yj are patches centered at
i/j in X̂, X and Y, repectively.

Table 1. Optimization Models
Method Optimization Model

Mean Filter X̂(i) = argmin
X(i)

∑
j∈Si

(X(i)− Y(j))2

Gaussian Filter X̂(i) = argmin
X(i)

∑
j∈Si

ωij (X(i)− Y(j))2

Median Filter X̂(i) = argmin
X(i)

∑
j∈Si
|X(i)− Y(j)|

NLM [11] X̂i = argmin
Xi

∑
j∈Si

ωij ||Xi − Yj ||2

NLEM [10] X̂i = argmin
Xi

∑
j∈Si

ωij ||Xi − Yj ||

INLEM [11] X̂i = argmin
Xi

∑
j∈Si

√
ωij ||Xi − Yj ||

PNLM [12] X̂i = argmin
Xi

∑
j∈Si

fij ||Xi − Yj ||2

NLFM [14] {X̂i, ω̂ij} = argmin
Xi,ωij

∑
j∈Si

ωm
ij ||Xi − Yj ||2

Mean filter denoises an image through averaging all pix-
els in a search window, and assigns the resulting value to cen-
ter pixel. Gaussian filter is a kind of weighted average fil-
ters. Its weight is a given Gaussian kernel. Median filter is
used to find the median value in a search window. Different
from these denoising filters, NLM is a patch-based denois-
ing method and its weight is calculated from patch similarity.
Based on NLM, NLEM improves the denoising effect by re-
placing ||Xi − Yj ||2 with ||Xi − Yj ||. For further improve-
ment, INEM changes the weight of NLEM as √ωij . Unlike
these NLM-based methods, PNLM applies a new probabilis-
tic weight fij that can better reflects the patch similarity.

As can be seen, these denoising filters and NLM-based
methods calculate weight ωij only once and keep it un-
changed in later iterations. This sometimes leads to a
worse denoising performance because the similarity between
patches changes in each denoising iteration. In order to over-
come this weakness, NLFM considers ωij as a fuzzy variable

and updates both denoised image X̂ and weight ωij iteratively.
m of ωij is an exponential parameter and can nonlinearly map
the weight into an appropriate value to enhance the denoising
effect. However, the denoising performance of NLFM is not
convincing as well.

In Section 2.3, we will propose UDNLFM as a novel
NLM-based method that considers weight ωij as a fuzzy
variable and defines new unbiased distance to replace the
traditional Euclidean distance.

2.2. Unbiased Distances

Firstly, we define a new unbiased distance. Given two noisy
pixels Y(i) and Y(j), their squared pixel-pixel unbiased dis-
tance is

D2
U

(
Y(i),Y(j)

)
=
(
Y(i)− Y(j)

)2 − 2σ2, (4)

where i and j are the pixel locations in noisy image Y. σ2

is the variance of noise. From the viewpoint of statistics,(
Y(i) − Y(j)

)2 − 2σ2 is an unbiased estimator of
(
X(i) −

X(j)
)2

[7, 9, 15]. Then, we add up all the unbiased pixel dis-
tances within a patch window P to obtain the squared patch-
patch unbiased distance as

D2
U

(
Yi,Yj

)
= ||Yi − Yj ||2 − 2||P||σ2, (5)

||P|| is the size of P. Using the same principle, we can get a
generalized squared patch-patch unbiased distance between a
noisy patch Yj and a denoised patch (or target patch) X̂i as

D2
U

(
X̂i,Yj

)
=||X̂i − Yj ||2

− ||P||
(∑
l∈Si

ω2
il − 2ωij + 1

)
σ2, (6)

where
∑
l∈Si

ωil = 1 and X̂i =
∑
l∈Si

ωilYl. If ωii = 1 while

ωil = 0 (l ∈ Si, l 6= i), we will get X̂i = Yi and thus Eq. (6)
is reduced to Eq. (5).

Using patch-patch unbiased distance, we introduce a new
distance, named the combined unbiased distance. It will be
applied in our proposed UDNLFM. The squared combined
unbiased distance is defined by

D2
C

(
X̂i,Yj

)
=

α ·max
[
0,D2

U
(X̂i,Yj)

]
+ β ·

(
¯̂xi − ¯̂xj

)2
.

(7)

¯̂xi and ¯̂xj are average pixel values of the related denoised
patch. α and β are trade-off parameters.

2.3. UDNLFM

In this subsection, we introduce a novel NLM-based method,
named Unbiased Distance based Non-local Fuzzy Means
(UDNLFM).
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Using this combined unbiased distance, we introduce the
optimization model of UDNLFM as

{X̂i, ω̂ij} = arg min
Xi,ωij

∑
j∈Si

ωijD2
C

(
Xi,Yj

)
. (8)

In order to solve this optimization problem, we initialize

X̂
(0)

i = Yi and then update ωij and X̂i alternatively using the
following two equations.

ω
(t+1)
ij = exp

−D2
C

(
X̂

(t)

i ,Yj
)

h2

 ·Hij , (9)

X̂
(t+1)

i =

∑
j∈Si

ω
(t)
ij Yj∑

j∈Si
ω
(t)
ij

, (10)

where X̂
(t)

i is the denoised image patch in the tth denoising it-
eration, where t = 0, 1, 2, · · · . After (t+1) iterations, we up-

date the weight and the denoised patch as ω(t+1)
ij and X̂

(t+1)

i .

The spatial kernel Hij = exp
(
− (i−j)2

hs

)
and hs is the spatial

parameter. Therefore, the new weight ωij contains both patch
similarity and spatial information. The detail procedures of
UDNLFM is shown in Algorithm 1.

Algorithm 1 UDNLFM
Input: The noisy image Y, the radius of patch k, the radius
of search window s and other parameters h, hs, α, β.

• Step 1: Extract a patch Yi with radius k centered at
each pixel i in Y.

• Step 2: For each pixel i, do

(a) Use X̂
(0)

i = Yi as initial values, and iteratively
find {X̂i, ω̂ij} = arg min

Xi,ωij

∑
j∈Si

ωijD2
C

(
Xi,Yj

)
by

Eq. (9) and (10).

(b) Assign X̂(i) as the center pixel value in X̂i.
Output: Denoised image X̂.

3. EXPERIMENTS

To show the denoising performance of proposed UDNLFM,
we compare UDNLFM with six NLM-based methods. They
are traditional NLM, PNLM, LJS-NLM, NLEM, INLFM
and NLFM. These denoising methods are applied to remove
Gaussian noise from images. PSNR and SSIM [16] are used
to quantitatively evaluate their denoising results.

10 20 30 40 50 60 70 80 90 100
σ

20

22

24

26

28

30

32

34

P
S
N
R

INLEM

LJS-NLM

NLEM

NLFM

NLM

PNLM

UDNLFM

(a)

10 20 30 40 50 60 70 80 90 100
σ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
S
IM

INLEM

LJS-NLM

NLEM

NLFM

NLM

PNLM

UDNLFM

(b)

Fig. 1. Average values of PSNR and SSIM on all the test
images: (a) average PSNR; (b) average SSIM.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Denoised results of the lena image with noise σ = 20:
(a) NLM; (b) NLEM; (c) INLEM; (d) PNLM; (e) LJS-NLM;
(f) NLFM; (g) UDNLFM; (h) Clean image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Denoised results of the cameraman image with noise
σ = 60: (a) NLM; (b) NLEM; (c) INLEM; (d) PNLM; (e)
LJS-NLM; (f) NLFM; (g) UDNLFM; (h) Clean image.
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Table 2. PSNR and SSIM results of UDNLFM and other methods at noise levels σ = 10, 20, · · · , 100.
PSNR(dB) SSIM(%)

Image Method\σ 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
NLM 31.49 27.98 24.46 22.61 21.50 20.96 20.43 19.87 19.64 19.43 87.86 81.97 76.29 71.78 67.99 65.33 62.98 60.16 58.25 56.77

NLEM 31.37 28.11 25.16 23.26 22.27 21.96 21.53 20.98 20.76 20.40 88.52 81.98 74.72 68.13 61.65 56.93 52.17 47.50 43.11 40.38
INLEM 31.80 27.81 25.81 24.08 22.76 22.25 21.64 20.96 20.60 20.14 90.38 81.50 73.55 65.96 57.69 51.85 46.29 41.17 36.76 33.86

c.man PNLM 32.36 28.89 27.23 26.06 24.84 24.05 22.97 22.05 21.69 21.01 92.49 85.85 81.54 78.60 75.02 71.99 68.44 64.61 62.58 58.99
LJS-NLM 33.06 29.36 26.94 25.25 23.77 22.97 22.09 21.20 20.78 20.20 92.30 85.83 79.49 74.92 69.20 64.70 60.09 54.72 50.63 46.97

NLFM 32.15 28.14 26.16 24.75 23.38 22.72 21.99 21.23 20.88 20.40 91.60 82.72 75.58 69.24 61.51 55.74 50.13 44.87 40.28 37.27
UDNLFM 32.98 29.37 27.64 26.44 25.13 24.37 22.41 22.45 22.01 21.36 92.21 85.70 82.13 79.55 75.94 73.83 69.13 66.49 63.88 60.64

NLM 31.58 26.49 24.23 22.85 22.00 21.38 20.84 20.48 20.27 20.07 87.79 77.42 71.07 66.27 62.45 59.39 56.91 54.93 53.45 52.26
NLEM 31.44 27.06 25.05 24.01 23.34 22.90 22.40 21.77 21.42 21.03 88.50 79.29 73.16 68.59 63.93 59.67 54.95 50.51 46.60 43.25
INLEM 31.38 27.73 25.75 24.43 23.55 22.95 22.30 21.57 21.08 20.60 89.49 81.27 73.70 67.19 60.91 55.44 49.74 44.78 40.48 37.09

lena PNLM 32.16 28.76 27.10 25.90 24.61 23.74 22.89 21.97 21.58 21.15 91.03 84.83 79.71 75.26 70.49 66.42 62.90 58.85 56.02 53.96
LJS-NLM 32.59 28.66 26.52 24.89 23.62 22.67 21.74 21.00 20.54 20.13 91.10 83.51 77.46 71.90 66.01 60.90 55.96 51.41 47.57 44.97

NLFM 31.76 28.13 26.21 24.82 23.83 23.18 22.52 21.77 21.33 20.87 90.32 82.82 75.80 69.52 63.42 58.15 52.68 47.83 43.56 40.17
UDNLFM 32.72 29.31 27.44 26.08 24.91 24.16 23.55 22.65 22.29 21.90 91.20 85.35 80.73 76.39 72.39 68.99 66.25 62.42 60.22 58.34

NLM 32.29 27.66 24.84 22.91 21.75 20.87 20.41 20.04 19.72 19.39 90.17 82.81 76.84 71.84 67.71 64.19 61.82 59.39 57.73 55.36
NLEM 32.01 28.18 25.70 24.03 23.13 22.29 21.72 21.27 20.80 20.42 90.41 83.89 78.02 72.09 67.19 62.07 57.46 53.28 48.62 44.54
INLEM 31.56 28.25 26.14 24.49 23.49 22.53 21.81 21.23 20.65 20.15 90.43 83.90 77.21 69.89 63.45 57.34 51.86 47.21 42.32 38.16

peppers PNLM 32.74 29.79 27.94 26.32 25.09 24.07 23.06 22.22 21.62 20.94 91.88 87.35 83.28 79.00 74.98 71.66 68.33 64.82 62.19 58.39
LJS-NLM 33.25 29.51 27.01 25.07 23.68 22.46 21.59 20.89 20.26 19.64 92.01 86.19 80.69 75.03 69.51 64.41 59.78 55.44 51.18 47.14

NLFM 32.04 28.60 26.50 24.89 23.93 23.00 22.22 21.59 20.97 20.47 91.15 85.09 79.02 72.37 66.41 60.72 55.43 50.84 45.89 41.65
UDNLFM 33.58 30.58 28.54 26.77 25.83 24.88 23.99 23.20 22.41 21.83 91.97 88.34 85.12 81.21 78.14 75.21 72.42 69.59 66.74 63.27

NLM 33.28 27.91 25.96 24.76 24.05 23.56 23.03 22.76 22.36 22.14 89.60 80.92 76.43 73.45 71.57 69.92 68.26 66.81 65.10 63.81
NLEM 33.41 28.36 26.50 25.38 24.75 24.26 23.68 23.24 22.77 22.24 90.27 81.57 75.31 69.51 64.57 59.59 53.73 49.38 44.76 41.57
INLEM 33.18 28.88 26.95 25.66 24.80 24.13 23.39 22.80 22.20 21.60 90.77 81.89 73.83 66.02 59.30 52.97 46.42 41.46 36.72 33.55

house PNLM 34.61 31.42 29.18 27.23 26.12 25.28 24.67 24.18 23.53 23.12 92.81 87.84 83.00 78.05 74.75 71.67 69.51 66.91 64.19 62.13
LJS-NLM 34.70 30.49 28.10 26.34 25.33 24.57 23.84 23.31 22.70 22.33 92.69 85.52 79.50 73.90 69.81 65.24 61.06 56.86 52.81 49.84

NLFM 33.71 29.90 27.67 26.12 25.17 24.47 23.73 23.15 22.57 21.99 91.54 84.19 76.64 69.07 62.74 56.71 50.38 45.49 40.68 37.45
UDNLFM 34.78 31.53 29.39 27.63 26.58 25.74 25.05 24.47 24.07 23.33 92.63 87.57 83.38 79.12 76.09 73.22 70.93 68.29 65.84 63.71

We conduct the denoising experiments on forty grayscale
images of size 256×256. The parameter settings of UDNLFM
in the experiments are k = 2, s = 7, h = 2.74σ, hs = 255σ,
α = 0.5 and β = 3.0. Since σ is needed in the calculation
of unbiased distances, we use its rough estimation value. For
other six methods, we set their parameters as recommended
in the related references.

Table 2 displays the quantitative results of seven denois-
ing methods. The noise level σ ranges from 10 to 100. From
the PSNR results, UDNLFM outperforms other methods on
almost all situations. In terms of SSIM, UDNLFM shows
competitive performance over other methods, although it is a
slightly poorer result than PNLM and LJS-NLM when σ =
10 or 20, because the fixed patch size can not adapt to all
noise levels. Especially for low noise levels, the patch size is
a little larger to process noise around edges. Fig. 1 presents
the average value of PSNR and SSIM on the test images.
According to average PSNR results (Fig. 1(a)), UDNLFM
(red line) is about 0.5dB higher than PNLM (cyan line) and
1dB higher than NLFM (green line) on each noise level. That
means UDNLFM achieves an obvious improvement in PSNR
compared with other six methods. In Fig. 1(b), it can be
observed that the average SSIM values of INLEM, NLEM,
NLFM and LJS-NLM drop rapidly as σ increases. When
σ = 70, they are almost reduced below 60%. However,
UDNLFM reaches 60% when σ = 100. These results demon-
strate that UDNLFM works better on heavy noise. In sum-
mary, UDNLFM has the best denoising results in quantitative
analysis.

Fig. 2 shows the denoised results of the lena image (σ =
20). INLEM (Fig. 2(c)) and NLFM (Fig. 2(f)) still remain
noise near the edge of hat, while NLM (Fig. 2(a)) and NLEM
(Fig. 2(b)) over-smooth the details of the feather on the hat.

Besides, PNLM (Fig. 2(d)) and LJS-NLM (Fig. 2(e)) leave
obvious noise around the mouth and eyes. UDNLFM (Fig.
2(g)) shows superior ability in removing noise and preserving
details.

Fig. 3 shows denoised results of the cameraman image
on a higher noise level (σ = 60). NLM (Fig. 3(a)) smooths
the image excessively, and thus it is difficult to identify the
structure of the camera in its denoising result. NLEM (Fig.
3(b)), INLEM (Fig. 3(c)) and NLFM (Fig. 3(f)) bring a lot of
ringing artifacts to the denoised images. In the result of LJS-
NLM (Fig. 3(e)), there are noise remaining around the cam-
era and the tripod. PNLM (Fig. 3(d)) shows a good denois-
ing performance, but it also brings a few artifacts around the
camera. Compared to other methods, UDNLFM (Fig. 3(g))
achieves the best visual result.

In Python, on a 2.70 GHz Intel Core i7 processor,
UDNLFM takes an average runtime of about 14 seconds
to denoise images of size 256 × 256 using a search window
size of 15× 15.

4. DISCUSSION

In this study, we first introduced three distances, named
pixel-pixel unbiased distance, patch-patch unbiased distance
and combined unbiased distance. Compared with traditional
Euclidean distance, they are more robust to measure the im-
age patch similarity. Using these unbiased distances, we
further proposed a novel Unbiased Distance based NLFM
(UDNLFM). Similar with NLFM, it also regards the weight
ωij as a fuzzy variable and updates in each denoising itera-
tion. Experiments have shown that UDNLFM outperforms
other competing NLM-based methods in image denoising.
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