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ABSTRACT

Exact histogram specification (EHS) is a classic image processing
problem which generalises histogram equalisation. Over the years,
no optimum solution to the EHS problem has been given with respect
to any similarity criterion. An analytic and efficient solution to the
optimum EHS problem, according to the mean squared error (MSE)
criterion, is presented here. The inverse problem is also examined,
and closed-form performance analyses are given in both cases.

Index Terms— Exact histogram specification, histogram match-
ing, histogram equalisation.

1. INTRODUCTION

The exact histogram specification (EHS) problem (less often called
direct histogram specification, histogram matching, histogram modi-
fication, or histogram modelling) is a classic image processing prob-
lem that finds its roots in the generalisation of the concept of his-
togram equalisation by Zhang [1]. For years, the solution to the
EHS problem was known to be unique in the continuous case. In
2006 Coltuc et al. [2] showed that the lack of uniqueness in the dis-
crete case —the most relevant in practical image processing— could
be overcome by using strict pixel orderings. This work sparked a
peak of activity around the EHS problem [3, 4, 5, 6, 7]. However,
the problem remains unsolved in terms of analytical optimality un-
der any similarity criterion. No closed-form performance analyses
have been provided either. Here we solve the optimum EHS problem
using the minimum Euclidean distance criterion (i.e., the minimum
MSE) to gauge optimality. We then analyse the inverse problem, and
we put forward a reconstruction strategy which improves on the state
of the art. We give closed-form performance analyses for both prob-
lems. Our results hinge on the centrality of permutations in EHS.

1.1. Notation

Boldface lowercase Roman letters are column vectors. The i-th el-
ement of vector a is ai. The special symbols 0 and 1 are the all-
zeros and the all-ones column vectors, respectively, of length given
by the context. Capital Greek letters denote matrices; the entry at
row i and column j of A is (A)i,j . (·)t is the transpose opera-
tor. diag(a) is a diagonal matrix with a in its diagonal, whereas
diag(A1,A2, . . . ,Am) is a block-diagonal matrix whose blocks are
the square matrices A1,A2, . . . ,Am, not necessarily of same dimen-
sions. I is the identity matrix. The 2-norm of a is ‖a‖ =

√
ata.

Calligraphic letters are sets, and |V| is the cardinality of set V . The
indicator function is defined as 1{θ} = 1 if logical expression θ is
true, and zero otherwise.

We will focus on greyscale images. An image is denoted by an
n-vector z = [z1, z2, . . . , zn]t ∈ Vn where V = {v1, v2, . . . , vq} ⊂
Z. We assume that zt is obtained by concatenating the rows of the

matrix of quantized image intensities. Also, v = [v1, v2, . . . , vq]
t

gives the elements of V in increasing order, that is, v1 < v2 < · · · <
vq . For intensities represented with b bits, v = [0, 1, . . . , 2b − 1]t

and q = 2b. The histogram of z is a vector hz = [hz
1, h

z
2, . . . , h

z
q ]
t

such that hz
k =

∑n
i=1 1{vk=zi} for k = 1, 2, . . . , q.

Let Sn be the symmetric group, namely, the group of all per-
mutations of {1, 2, . . . , n}. A permutation σ ∈ Sn is a vector
σ = [σ1, σ2, . . . , σn]t where σi ∈ {1, 2, . . . , n} and σi 6= σj
for all i 6= j. This vector defines a permutation matrix Πσ with en-
tries (Πσ)i,j = 1{σi=j}. The reordering of an n-vector x using σ
is the vector y = Πσ x, for which yi = xσi for i = 1, 2, . . . , n.
Two or more different permutations may lead to the same reorder-
ing of the elements of x. Hence we will follow the convention
that a rearrangement of x is a unique reordering of its elements.
The number of rearrangements of x is given by the multinomial
coefficient

(
n
hx

)
= n!/(Πq

k=1h
x
k !). Sx ⊂ Sn denotes any set of

permutations leading to all rearrangements of x. The rearrange-
ment of x in nondecreasing order is denoted by x↑, with elements
x↑1 ≤ x↑2 ≤ · · · ≤ x↑n , whereas the rearrangement of x in nonin-
creasing order is denoted by x↓.

2. EXACT HISTOGRAM SPECIFICATION

The EHS problem is as follows: given an original image z ∈ Vn
and a target histogram hx corresponding to bins v and such that
1thx = n, we wish to produce an equalised version y ∈ Vn of
z such that hy = hx. A particular case is the classic problem of
histogram equalisation, in which the target histogram is flat and then
hx = (n/q)1 (assuming that q divides n). This is why EHS can be
called “generalised histogram equalisation”. If we define x ∈ Vn to
be an arbitrary vector with the target histogram, for instance,

x , x↑ = [v1, . . . , v1︸ ︷︷ ︸
hx
1

, v2, . . . , v2︸ ︷︷ ︸
hx
2

, . . . , vq, . . . , vq︸ ︷︷ ︸
hx
q

]t, (1)

then the problem description implies that any candidate equalised y
must be a rearrangement of x. This is because hy = hx requires
that

∑n
i=1 1{vk=yi} =

∑n
i=1 1{vk=xi} for all k = 1, 2, . . . , q,

which can only be true if y = Πσ x for some permutation σ ∈ Sx.
Thus, the pool of candidates for a solution to the problem of EHS
is the same as the set of all rearrangements of x. Coltuc et al. [2]
also discussed the combinatorics of EHS but considering the re-
orderings (permutations) of x rather than its rearrangements, conse-
quently stating that there are n! possibilities instead of |Sx| =

(
n
hx

)
.

An optimality criterion must be adopted in order to select a
solution y∗ among the pool of possibilities. The sensible crite-
rion is the maximisation of the similarity between z and y∗. If
δ : Vn×Vn → R is a similarity measure, then optimum EHS comes
down to solving the following combinatorial optimisation problem:

σ∗ = arg max
σ∈Sx

δ(z,Πσx). (2)
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In the remainder we will assume δ(z,y) = −‖z−y‖, which implies
the MSE criterion. The shortcomings of the MSE as a quality evalua-
tor in image processing are well known [8], but one should also note
that the optimum EHS problem has not yet been solved for any sim-
ilarity criterion. Furthermore, we will verify that the MSE exhibits
desirable properties in the context of histogram equalisation.

Before solving (2) it is interesting to highlight some connec-
tions of the optimum EHS problem. The quantization of z using
the codebook formed by all rearrangements of x can be defined us-
ing (2) as Qx(z) , Πσ∗x, and then y∗ = Qx(z). Therefore the
optimum EHS problem is formally identical to source coding using
permutation codes [9]. The only difference is that hx (or x) is a de-
sign parameter in the source coding problem. Also, optimum EHS
is formally identical to minimum-distortion perfect counterforensics
of histogram-based forensics [10, 11]. The main difference in the
counterforensics problem is that hx stems from an authentic signal x
(decoy), and thus x is usually chosen from a representative database.

2.1. Optimum Exact Histogram Specification

The problem of finding a rearrangement of x closest to z in the Eu-
clidean distance has a simple solution using the so-called rearrange-
ment inequalities [12]:

(r↑)ts↓ ≤ rts ≤ (r↑)ts↑, (3)

for any r, s ∈ Rn. Relying on (3) we can succinctly state the so-
lution to (2). Firstly see that, as δ2(z,Πσx) = ‖z − Πσx‖2 =
‖z‖2 + ‖x‖2 − 2 ztΠσx because ‖Πσx‖ = ‖x‖ for all σ, then
solving (2) is equivalent to maximising ztΠσx over σ ∈ Sx. Taking
into account the inequality on the right-hand side of (3), the bilinear
form to be maximised is bounded from above as ztΠσx ≤ (z↑)tx↑.
Thus, the minimum squared Euclidean distance in optimum EHS is

‖z− y∗‖2 = ‖z‖2 − 2(z↑)tx↑ + ‖x‖2. (4)

We discuss next how to produce an optimum y∗ attaining (4). Since
from (1) we have that x = x↑, given any permutation σz that sorts z
in nondecreasing order, i.e. z↑ = Πσzz, we can write ztΠt

σz
x =

(z↑)tx↑. Consequently, a permutation matrix associated to σ∗ in (2)
is Πσ∗ = Πt

σz
. Thus, an optimum is y∗ = Πσ∗x = Πt

σz
x↑,

which amounts to unsorting x↑ using the inverse of a permutation
that sorts z. An alternative view is that y∗ stems from replacing the
hx
1 smallest elements of z by v1, the next hx

2 smallest elements of z
by v2, et cetera. The complexity of this operation is that of sorting a
vector, and the worst-case complexity of the best sorting algorithms
isO(n logn). We must also note that the optimum solution y∗ max-
imises the average local intensity ratio (1/n)1t diag(z)−1y (assum-
ing zi > 0 for all i), i.e., the average local contrast between y and z
—a relevant factor in histogram equalisation.

2.2. Nonunique Optimum Solutions

The optimum y∗ is not unique whenever there are sorting ties in z↑.
In order to address this question, define vectors x↑k of length hz

k,
for k = 1, 2, . . . , q, such that [(x↑1)t, (x↑2)t, . . . , (x↑q)

t]t = x↑. The
histograms of these vectors can be obtained using two auxiliary n×q
matrices defined as follows: Λx↑ , with entries (Λx↑)i,k = 1{x↑i =vk}

,
and Λz↑ , with entries (Λz↑)i,k = 1{z↑i =vk}

. We can now define
H , Λtz↑Λx↑ , for which it holds that H = [hx

↑
1 ,hx

↑
2 , . . . ,hx↑q ]t.

This is because (H)k,l gives the number of elements of z↑ with

value vk that correspond to value vl in x↑. Using these histograms,
the number of different optimum solutions is

s ,
q∏
k=1

(
hz
k

hx
↑
k

)
. (5)

In order to spell out each of the s equivalent solutions, let Ξσ1···σq =
diag(Πσ1 ,Πσ2 , . . . ,Πσq ), with σk ∈ Sx↑

k
. There are s different

Ξ-matrices because |S
x
↑
k
| equals the k-th multinomial in (5); for any

of them it holds that Ξσ1···σqz
↑ = z↑. As Ξσ1···σqz

↑ = Πσzz, we
can generate all optimum solutions to the EHS problem as follows:

y∗σ1···σq
= Πt

σz
Ξσ1···σqx

↑. (6)

For the sake of choosing one of the s solutions, we will assume in
the following that Πσz corresponds to stable sorting [13], which pre-
serves the original order of ties in z, and that Ξσ1···σq = I. How-
ever (6) is important for two reasons: 1) it is the basis for accurate
distortion bounding strategies in Section 2.3; and 2) it evinces that
the optimum solutions to the EHS problem are an instance of parti-
tioned permutation coding [14]. In partitioned permutation coding
not all rearrangements of a vector are allowed, but only rearrange-
ments of partitions of the vector. This is what we observe in (6): hz

induces the partitioning of x↑ into q partitions x↑1,x
↑
2, . . . ,x

↑
q , such

that only rearrangements of these partitions are permissible in order
to produce rearrangements of x↑, each of which leads to a unique y∗.
This fact will find application in the inverse problem (Section 3).

2.3. Performance Analysis

Next, we produce bounds on the minimum distortion (4) which do
not depend on sorting z, and which exploit the geometry of permuta-
tions. The two basic geometric facts are: 1) since ‖y‖ = ‖x‖, then
all rearrangements y = Πσx lie on the permutation sphere centred
at 0 with radius ‖x‖; and 2) the rearrangements also lie on the per-
mutation plane with equation yt1 = xt1. Two other fundamental
geometric facts are given by the theorem and proposition that follow.

Theorem 1 (Covering Sphere): All rearrangements y = Πσx
are contained within a covering sphere with minimum radius
R =

√
‖x‖2 − (1/n)(xt1)2 and centre c = (1/n)(xt1)1. Equiv-

alently, ‖y − c‖2 ≤ R2 for any rearrangement y, and the (c, R)
pair specifies the smallest sphere for which this is true. Furthermore
all rearrangements actually lie on the surface of the covering sphere,
i.e., ‖y − c‖2 = R2 for any rearrangement y.

Proof : See Appendix A.

Proposition 1 (Centre of Covering Sphere): The average of all re-
arrangements y = Πσx is the centre of the covering sphere, i.e.,
y =

(
n
hx

)−1∑
σ∈Sx Πσx = c.

Proof : Firstly,
(
n
hx

)−1∑
σ∈Sx Πσx = (1/n!)

∑
σ∈Sn Πσx, as

each rearrangement of x appears Πq
k=1h

x
k ! times in the second sum-

mation. With this equality and (1/n!)
∑

σ∈Sn Πσ = (1/n)11t [14,
Appendix], we get

(
n
hx

)−1∑
σ∈Sx Πσx = (1/n)(xt1)1 = c. �

Before proceeding, we should mention that the three geometric
lower bounds given in [11] also hold in this problem. We would
simply like to add that the first two bounds in [11] can alterna-
tively be obtained by first applying Cauchy’s inequality [12] to
(z − c)t(y − c) in ‖z − c − (y − c)‖2 and to zty in ‖z − y‖2,
respectively, and then using the fundamental geometric facts about
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permutations. Also, a basic upper bound can be obtained by observ-
ing that the squared distance from z to y∗ must always be smaller
or equal than its average squared distance to the ensemble of all re-
arrangements of x, i.e, ‖z− y∗‖2 ≤

(
n
hx

)−1∑
σ∈Sx ‖z−Πσx‖2.

Using the same result as in the proof of Proposition 1 we see that
‖z − y∗‖2 ≤ ‖z‖2 + ‖x‖2 − (2/n)(zt1)(xt1). This bound can
alternatively be found by applying Chebyshev’s sum inequality [12]
to (z↑)tx↑ in (4). All of these bounds involve every rearrangement
of x, and thus are generally loose. For instance, equality in Cheby-
shev’s sum inequality requires x = α1 or z = β1, which means
that the upper bound cannot be sharp in real applications. The two
lower bounds stemming from Cauchy’s inequality are sharp if there
is alignment between y∗ − c and z − c, or between y∗ and z, re-
spectively (as collinearity implies equality in Cauchy’s inequality),
but either contingency depends on the actual z and hx.

Much better bounds can be found by exploiting the special ge-
ometry of the s optimum rearrangements. Since ‖z−y∗‖ is constant
for all optimum rearrangements, then they lie on a sphere with that
radius and centre z. Thus their average y∗ is inside the sphere, or
precisely on it iff s = 1, and thus not further away from z than any
of them, i.e., a lower bound is ‖z−y∗‖ ≤ ‖z−y∗‖. In order to ob-
tain y∗ = (1/s)

∑
σ1,...,σq

y∗σ1···σq
, define vectors ck of length hz

k

such that Πσzy
∗ = [ct1, c

t
2, . . . , c

t
q]
t. Now, using (6) see that

ck =
1( hz
k

hx
↑
k

) ∑
σk∈S

x
↑
k

Πσkx
↑
k =

(1tx↑k)

hz
k

1, (7)

where the first equality in (7) is because the summation over σk
appears repeated s/|S

x
↑
k
| times in the average over σ1, . . . ,σq , and

the second one is because of Proposition 1 applied to x↑k. Now,
‖z−y∗‖2 = ‖z↑−Πσzy

∗‖2 =
∑q
k=1 ‖vk1−ck‖2, and therefore

‖z− y∗‖2 =

q∑
k=1

hz
k

(
vk −

(1tx↑k)

hz
k

)2

. (8)

We show next that the s optimum solutions live in yet another
geometric locus. The square of the distance of an optimum solu-
tion y∗ to the average is ‖y∗ − y∗‖2 = ‖Πσzy

∗ − Πσzy
∗‖2 =∑q

k=1 ‖Πσkx
↑
k − ck‖2. Applying Theorem 1 to each term in this

sum (see (17)), and then using
∑q
k=1 ‖x

↑
k‖

2 = ‖x‖2 we get

‖y∗ − y∗‖2 = ‖x‖2 −
q∑
k=1

1

hz
k

(1tx↑k)2. (9)

Since (9) is independent of y∗, then all s optimum solutions are on
the surface of a fourth sphere, this time with centre y∗ and radius
‖y∗ − y∗‖. Hence, using the triangle inequality we obtain the fol-
lowing upper bound on the optimum distortion:

‖z− y∗‖ ≤ ‖z− y∗‖+ ‖y∗ − y∗‖. (10)

3. INVERSE PROBLEM

The inverse EHS problem, first proposed in [15], is as follows: given
y∗ and hz, produce the best approximation to z. According to [7],
this can be a means to gauge an EHS algorithm. In our opinion,
however, an EHS method should solely be judged from its maximisa-
tion of a similarity measure and from its complexity (see Section 2).
Still, the inverse EHS problem is interesting and distinct in and of

itself, for reasons discussed below. Since y∗ is at minimum dis-
tance from z, then the optimum inverse must also be at minimum
distance from y∗. So, at first sight, the inverse problem is like the
EHS problem with original image y∗ and target histogram hz, where
the equalised solution can now be called the reconstruction ẑ of z.
This observation takes us to the same element pairings in the inner
product (z↑)tx↑, but viewed the other way round. Therefore we now
create z↑ using hz as in (1), we then sort y∗ to get x↑ = Πσy∗y

∗,
and finally obtain ẑ = Πt

σy∗ z
↑.

3.1. Nonunique Reconstructions

As in Section 2.2, ẑ is not unique whenever there are sorting ties
in x↑. Nevertheless, this fact becomes the key difference with re-
spect to the direct EHS problem: whereas all reconstructions are
at equal minimum distance from y∗, i.e. ‖y∗ − ẑ‖ = ‖z − y∗‖,
not all them are at equal distance from z. The reconstruction
distortion ‖z − ẑ‖2 is what matters in the inverse problem. The
number of possible reconstructions is determined by the his-
tograms of vectors z↑k of length hx

k , for k = 1, 2, . . . , q, such
that z↑ = [(z↑1)t, (z↑2)t, . . . , (z↑q)

t]t. These histograms are again
given by matrix H in Section 2.2, but using its columns rather than
its rows, i.e., H = [hz

↑
1 ,hz

↑
2 , . . . ,hz↑q ]. Therefore the number of

different reconstructions is

s′ ,
q∏
k=1

(
hx
k

hz
↑
k

)
.

In general, s′ 6= s. Each reconstruction can be put as ẑ = Πt
σy∗Ξ′z↑

for some Ξ′ = diag(Πσ′1
,Πσ′2

, . . . ,Πσ′q ) with σ′k ∈ Sz↑
k

. Exact
reconstruction requires that ẑ = Πt

σy∗Ξ′Πσzz = z; thus, assuming
without loss of generality that Πσy∗ corresponds to stable sorting
of y∗, the main question is how to choose Ξ′ (because Πσz is un-
known). The analysis that follows will give us relevant clues.

3.2. Performance Analysis and Reconstruction Approaches

Our main goal is to bound or estimate ‖z− ẑ‖2. An optimum of the
EHS problem can be written in two different ways: y∗ = Πt

σy∗Ξ′x↑

and y∗ = Πt
σz

x↑, and then x↑ = ΠσzΠt
σy∗Ξ′x↑. This implies that

ΠσzΠt
σy∗Ξ′ = diag

(
Πσ′′1

,Πσ′′2
, . . . ,Πσ′′q

)
, (11)

where Πσ′′
k

is a hx
k × hx

k permutation matrix for k = 1, 2, . . . , q.
We can exploit the structure of (11) to decompose the reconstruc-
tion distortion as follows: ‖z − ẑ‖2 = ‖Πt

σz
z↑ − Πt

σy∗Ξ′z↑‖2 =

‖z↑ −ΠσzΠt
σy∗Ξ′z↑‖2 =

∑q
k=1 ‖z

↑
k −Πσ′′

k
z↑k‖

2. Applying now
the left-hand side inequality in (3) to each term in this sum, we obtain

‖z− ẑ‖2 ≤ 2

(
‖z‖2 −

q∑
k=1

(z↑k)tz↓k

)
. (12)

This bound, and other results, can also be given by exploiting the ex-
act analogy between the inverse EHS problem and perfect steganog-
raphy of memoryless signals [14]. In the latter problem, z↑ would
be called a host signal, z↑1, z

↑
2, . . . , z

↑
q would be partitions of z↑, and

Πσ′′
k
z↑k, for k = 1, 2, . . . , q, the partition rearrangements used to

encode one message out of s′. The vector ΠσzΠt
σy∗Ξ′z↑ would be

a watermarked signal carrying the message. Finally, the reconstruc-
tion distortion is analogous to the watermark power. Because of this
analogy, if ties are broken uniformly at random when sorting y∗ (i.e.,
if Ξ′ is chosen uniformly at random among the s′ possibilities), then
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z ξ∗ ξl ξu ξ[7] ξs ξr ξ ξ′l νs νr ν

2
5
6
×

2
5
6

chemical 15.84 15.72 15.85 49.67 50.68 49.16 49.18 46.47 0.05 0.22 0.22
clock 11.44 11.15 11.44 51.78 55.15 52.73 52.66 50.27 0.15 0.24 0.24
elaine 18.63 18.48 18.63 49.90 52.90 50.54 50.72 48.56 0.06 0.25 0.25
moon 14.25 14.08 14.25 47.82 47.16 44.75 44.65 41.78 0.07 0.17 0.18
tree 24.82 24.40 24.83 52.01 57.82 53.32 53.30 51.10 0.08 0.25 0.25
trui 19.38 19.16 19.38 52.86 58.53 53.69 53.67 51.53 0.05 0.22 0.22

5
1
2
×

5
1
2

aerial 11.47 11.35 11.47 50.05 51.37 49.05 49.05 46.43 0.10 0.22 0.22
airplane 10.30 9.62 10.34 47.25 47.49 46.33 46.31 43.76 0.04 0.07 0.07
boat 17.11 16.90 17.12 49.89 52.64 50.32 50.35 48.03 0.13 0.26 0.26
mandrill 17.83 17.68 17.84 49.76 53.27 49.56 49.51 47.17 0.05 0.23 0.23
raffia 13.45 11.90 13.67 41.12 64.28 42.90 42.94 41.09 0.00 0.01 0.01
stream 19.56 19.02 19.58 45.08 60.14 46.32 46.30 44.35 0.00 0.08 0.08

z ξ∗ ξl ξu ξ[7] ξs ξr ξ ξ′l νs νr ν

1
0
2
4
×

1
0
2
4

bark 13.94 13.83 13.94 51.30 55.06 51.91 51.94 49.72 0.07 0.24 0.24
man 15.62 15.49 15.62 49.44 51.65 50.11 50.06 47.95 0.05 0.27 0.27
pentagon 14.27 14.10 14.27 51.35 52.36 50.76 50.74 48.30 0.03 0.17 0.17
smarties 15.34 15.20 15.34 51.64 53.07 50.79 50.81 48.34 0.09 0.25 0.25
stones 13.95 13.85 13.96 51.60 54.90 51.92 51.91 49.57 0.14 0.30 0.30
traffic 21.48 21.23 21.48 51.01 53.79 51.08 51.06 48.53 0.09 0.24 0.24

2
0
4
8
×

2
0
4
8

eifel 15.91 15.72 15.91 48.74 47.20 47.71 47.74 45.04 0.11 0.23 0.23
boys 14.15 14.00 14.15 51.71 55.40 52.36 52.37 49.99 0.10 0.25 0.25
plants 16.46 16.33 16.46 49.52 47.52 47.64 47.65 44.87 0.07 0.24 0.24
pont 15.37 15.25 15.37 51.55 54.89 51.70 51.69 49.37 0.06 0.25 0.25
church 15.25 15.15 15.25 51.28 54.57 51.28 51.28 48.91 0.08 0.30 0.30
violine 18.44 18.21 18.44 51.85 52.81 50.66 50.66 48.15 0.09 0.24 0.24

Fig. 1. The first three columns in each table show results for optimum EHS (Section 2); the remaining columns show results for the inverse
problem (Section 3). Theoretical results are shaded in grey. ξ values are PSNRs in decibels, and ν values are reconstruction error rates.

all the results from [14] apply unaltered, and we can accurately pre-
dict the reconstruction performance. This reconstruction procedure
will be called the random approach. We refer the reader to [14] for
proofs of the two results that we will simply state next. By the weak
law of large numbers, the reconstruction distortion in the random
approach converges (in probability, and as n→∞) to

‖z− ẑ‖2 = 2

(
‖z‖2 −

q∑
k=1

1

hx
k

(1tz↑k)2
)
. (13)

The reconstruction error rate ν , (1/n)
∑n
i=1 1{zi 6=ẑi}, (cf. the

degree of host change in [14]) is mentioned in [2] as an addi-
tional performance measure. In the random approach, ν converges
to ν =

∑q
k=1(hx

k/n)(1− (‖hz
↑
k‖/hx

k)2). Although (13) is, in
general, quite better than (12), exact reconstruction requires that
(Ξ′)tΠσy∗ implements stable sorting of z (as per our assumption in
Section 2.2). We will not delve into this question here, but we have
found that a stable reconstruction approach which generally beats the
random approach is obtained by choosing Ξ′ = diag(J1, J2, . . . , Jq),
where Jk is the hx

k × hx
k exchange matrix.

4. RESULTS

We assume hx = (n/q)1 (i.e., classic histogram equalisation) and
we use each of the 24 images in [7, Figure 2] as z. The peak signal-
to-noise ratio (PSNR) is denoted as ξ = 10 log10(n(2b − 1)2/‖z−
y‖2) (dB). As our EHS results are provably optimum in terms of
the PSNR, we just verify, in the first three columns of both tables in
Fig. 1, the accuracy of the tightest lower and upper bounds ξl and ξu
(which correspond to (10) and (8), respectively) with respect to the
maximum ξ∗ (which corresponds to the empirical y∗). All remain-
ing results in Figure 1 are for the inverse EHS problem, where we
reconstruct ẑ from y∗ and hz and all PSNRs correspond to ‖z− ẑ‖2
(rather than ‖z − y‖2). Since we are not claiming optimality in
the inverse problem, we compare our figures with the state-of-the-
art results by Nikolova and Steidl [7] (marked as ξ[7]), who found
their algorithms superior to [2] and [3] (i.e., the relevant prior art).
Our empirical results for the random and stable reconstruction ap-
proaches in Section 3.2 are marked as ξr and νr , and as ξs and νs,
respectively. ξ′l is the lower bound corresponding to (12) and ξ cor-
responds to (13). The theoretical values accurately match their cor-
responding empiricals, i.e., ξ and ν match ξr and νr , respectively.
We stress that ξr and νr are not averages, but “one-shot” results. The
random approach works better than (or as well as) [7] in 14/24 cases.
The stable approach works better than [7] in 21/24 cases. Two re-
markable cases are “raffia” and “stream”, for which the best previous
results (i.e., ξ[7]) are just above the worst-case ξ′l, but for which the

stable approach achieves near-perfect reconstruction. To conclude,
we have given an optimum and practical solution to EHS, supported
by an accurate analysis. We have also shown the connections of EHS
and inverse EHS with other seemingly unrelated research topics.

A. PROOF OF THE COVERING SPHERE THEOREM

The minimax problem to solve is R2 = minc maxy ‖y − c‖2. As-
sume initially that c = c↑. Given c, the least squared radius required
for covering all rearrangements is maxy ‖y−c‖2, where y = Πσx.
As ‖y− c‖2 = ‖y‖2− 2ytc+ ‖c‖2 and ‖y‖ = ‖x‖, then we only
have to minimise ytc. Since c = c↑, the inequality on the left-hand
side of (3) implies that a minimising rearrangement is y = x↓. Next,
we have to find R2 = minc ‖x↓ − c‖2. The optimum c must be on
the permutation plane since all the rearrangements are on that plane,
and so ct1 = xt1. Using this equality and the inequalities c1 ≤ c2,
c2 ≤ c3, . . . , cn−1 ≤ cn, we pose the following constrained opti-
misation problem for f(c) , 2 ctx↓ − ‖c‖2: maxc f(c) subject
to g(c) , ct1 − xt1 = 0 and hi(c) , ci − ci+1 ≤ 0 (for
i = 1, 2, . . . , n − 1). The Karush-Kuhn-Tucker conditions for a
solution require that there exist c, λ, µ1, µ2, . . . , µn−1 such that

∇f(c) = λ∇g(c) +

n−1∑
i=1

µi∇hi(c) (14)

µihi(c) = 0, i = 1, 2, . . . , n− 1 (15)
µi ≥ 0, i = 1, 2, . . . , n− 1 (16)

The set of conditions (15) is satisfied when c = c1. Since ct1 =
xt1, then c = (1/n)(xt1) and c = (1/n)(xt1)1. The square of
the Euclidean distance of any rearrangement y to this solution is

‖y − c‖2 = ‖x‖2 − 1

n
(xt1)2 = R2, (17)

where we have used ‖y‖2 = ‖x‖2, yt1 = xt1 and ytc =
(1/n)(xt1)2, and where the last equality in (17) is because the
squared distance is independent of y. Next, the n equalities in vector
equality (14) are 2(x↓1−c) = λ+µ1, 2(x↓i −c) = λ+µi−µi−1 for
i = 2, . . . , n−1, and 2(x↓n−c) = λ−µn−1. Adding all these equal-
ities we see that λ = 0, and so we have that µi = 2(

∑i
j=1 x

↓
j − ic)

for i = 1, 2, . . . n − 1. Now, since c ≺ x (i.e., x majorises [16] c),
then µi ≥ 0 for i = 1, 2, . . . , n− 1. So we have found c, λ and µi
fulfilling all Karush-Kuhn-Tucker conditions.

Finally, see that all n! possible initial assumptions for the order-
ing of the elements of c lead to the same (c, R) pair: the only change
is the y that minimises ytc for the ordering assumption, which al-
ways leads to the same solution as above because x↓1 must match the
smallest element of c, x↓2 the next smallest element, et cetera. �
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