DEEP LAYER PRIOR OPTIMIZATION FOR SINGLE IMAGE RAIN STREAKS REMOVAL
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ABSTRACT

Visible distortions caused by rain streaks have significan-
t negative effects on the performance of many vision and
learning algorithms. Most of the existing deraining approach-
es propose to build complex prior models to formulate the
appearance of rain streaks. Unfortunately, these human-
designed priors tend to over-smooth the background and
leave too many rain streaks since the distribution of rain
streaks is complex and disordered. In this work, we exploit a
deep layer prior under the maximum a posterior framework
to recover the intrinsic rain structure. The optimization of
the resulted variational energy can be understood as simul-
taneously performing rain and image propagations based on
data-dependent residual networks and task cues (e.g., total
variation regularization), respectively. Experimental results
on both synthetic and real test images demonstrate the ef-
fectiveness of our approach against both designed priors and
fully data-dependent convolutional neural networks.

Index Terms— Rain streaks removal, convolutional neu-
ral network, prior optimization, image enhancement

1. INTRODUCTION

Most outdoor vision systems exert its effectiveness under a
favorable condition. However, there are many uncertainties
and unfavorable factors outdoors. As the most common bad
weather condition, rain would not only reduce visibility of the
image but also cause the deformation of background objects.
Therefore, it is crucial to remove rain streaks from the rainy
image before computer vision algorithms process it. By ob-
serving we can find the distribution of rain streaks is sparse
and asymmetrical, leading it challenging to represent the rain
streaks with a uniform model. Besides, rainy images are shot-
ted outdoors surrounded by various objects, which makes it d-
ifficult to distinguish rain streaks from the complicated back-
ground structure and texture. Due to the features mentioned
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(c) Our rain layer

(d) Our result (SSIM: 0.97)

Fig. 1. Top row: (a) is a challenging rainy image and (b) is
a result recovered by a recently proposed deep rain removal
network [1]. Bottom row: (c) is the rain layer extracted by
our method and (d) is our recovered image. It can be seen that
our method achieved better performances on both qualitative
and quantitative comparisons.

above, rain streaks removal appeals more and more research
focuses in computer vision.

Recently, a number of single image rain streaks removal
methods have been proposed. And based on the core mecha-
nism, they are divided into two categories: conventional prior
modelings and convolutional neural networks.

Conventional Prior Modelings: Kang et al. [2] pro-
posed a method that decomposes the rainy image into two
layers, i.e. high frequency layer and low frequency layer. In
this way, rain streaks with background texture are assigned
into high frequency layer. By performing dictionary learning,
they attempts to separate the rain streaks from the high fre-
quency layer. Although the notion is elegant, results of this
method are not optimal due to its complexity. For the chal-
lenge of modeling rain streaks, the work by Li et al. [3] pro-
posed to use Gaussian mixture models for both background
and rain layers. By iterating the optimization equation with
two different constraints, two layers can be formulated sep-
arately. Gu and Meng [4] proposed a new layer separation
method which can be used in rain streaks removal by modify-
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ing the priors on two layers. It integrated the characteristics
of analysis sparse representation (ASR) and synthesis sparse
representation (SSR). Rainy image is decomposed into two
layers, where background layer is the large-scale structure
represented by ASR and rain streaks layer is the fine-scale
textures approximated by SSR. But this method is inefficient.

Convolutional Neural Networks: Convolutional neu-
ral networks (CNNs) have achieved promising performance
in computer vision. There are also some recent works on
rain streaks removal based on deep learning. Yang ef al. [5]
modified the existing model, adding a binary map to locate
rain streaks regions in the synthesis model. Moreover, they
developed a multi-task deep learning architecture that learns
the binary rain streaks map, appearance of rain streaks and
the clean background successively. Fu ef al. [1] utilized the
knowledge of image processing to modify the object func-
tion. Similar to the idea of [2] , it also decomposes the input
image into two frequency components and trains an end-to-
end deep learning network between high frequency compo-
nent and rain layer. The ultimate result can be obtained vi-
a integrating low frequency component and texture informa-
tion. Inspired by the superiority of deep learning, the work in
[6] improved the architecture of residual network, combining
more ResNet blocks [7] in his network. At the same time,
the training process becomes easier by reducing the mapping
range. The effectiveness of this network has been improved
greatly. [8] proposed a learning aggregated networks that also
can be applied to rain removal. These detail networks notice-
ably outperform other dictionary learning and mixture mod-
eling methods.

Although these methods have a certain effect on rainy im-
ages, there are also some shortcomings introduced by nature.
For conventional prior methods, models are not applicable for
the complex and irregular distribution like rain. It is difficult
for models to distinguish rain with background well which
makes the content information removed usually. As for deep
models, their performances are tightly related to the scale and
quality of the training data.

To overcome the limitations in existing approaches, we
develop a novel deep prior optimization framework to gain
advantages from both deep residual networks and task cues.
We provide a flexible optimization method to incorporate both
deep image layer priors and task cues for rain streaks and
natural scene modeling. Within this framework, we design
a residual type CNN to model the rain distribution based on
training data. We also incorporate total variation energy to
enforce our constraints on the recovered scene. In this way,
we actually obtain a hybrid propagation scheme to iterative-
ly estimate our desired scene from corrupted (by rain streak-
s) observation. We verify the effectiveness of our approach
and compare it with state-of-the-art methods on both synthetic
and real test images. Both quantitative and qualitative result-
s demonstrate the superiority against human-designed prior
models and fully data-dependent CNNSs.

2. THE PROPOSED APPROACH

In this section, we present the model for single image rain
streaks removal firstly, and then illustrate the proposed deep
layer prior optimization with a detail analysis about it.

2.1. Basic Problem Formulation

From the point of mathematics, the input rainy image O €
RM>N can be modeled as a linear superimposition of the
desired background layer B € R™*¥ and the rain streaks
layer R € RM>¥ such that: O = B + R. The goal of rain
streaks removal is to decompose the rain free background B
and the rain streaks layer R from a given input image O. S-
ince this problem is ill-posed, we propose to maximize the
joint probability of the background layer and rain layer us-
ing Maximum a Posteriori (MAP) which can be written as:
p(B.R|O) « p(O|B,R) - p(B) - p(R) where p(O|B, R)
delivers the likelihood of observation O and p(B), p(R)) rep-
resent the priors of B, R on the premise that they are inde-
pendent of O. We first define the feasible solution set as:

Q= {X|0 < [X]i; < [0 (i,4) € [1, M] x [1, N}

Then we can formally formulate single image rain streaks re-
moval as to minimize the following energy function:

. n Rl
B{Iﬁl.rElQHO B -R|7 + ?5(B) + Pr(R), (1)

where ||| represents the Frobenius norm. The first term
|O — B — R||% aims to maintain the fidelity between the in-
put image and the recovered image. The latter two items des-
ignate the priors imposed on B, R to regularize the inference.
It is worth mentioning that these two priors play a critical part
in estimating credible solutions.

2.2. Deep Layer Prior Optimization

According to the Eq. (1), we use a half-quadratic optimiza-
tion to solve this basic function, where we introduce two aux-
iliary variables Bp, Rp. Splitting the variables, we get the
subproblems about {B, R}, Bp, Rp shown as Eq. (2)-(4).
The proposed approach updates these variables iteratively. S-
ince Bp, Rp share the same formulation with the other vari-
ables given, implements of these two variables have nothing
in common, we detail the difference in the following.

Rp = argrlginnRHR ~Rp|%+Pr(Rp). ()
D
Bp = argminng||B - Bp||% + 5(Bp).  (3)
P
_ : _R_TRI2
{B,R} =arg min [0 —B — R||;+
118||B - Bp[® + nr[R — Ro|*.

Updating Rp: Due to orientations and sizes of the
streaks are inconsistent in an image, the distribution of rain
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streaks is complicated. Moreover, daedal background in-
creases the difficulty in identifying rain streaks. Conventional
prior based methods attempt to introduce a complicated mod-
el constraint to simulate rain streaks, including dictionary
learning [2, 9], Gaussian mixture models (GMM) [3], but
they are defective in distinguishing rain streaks from back-
ground objects, leading to an over-smooth result. Inspired by
the superiority of deep learning performed in image denoising
[10] and super resolution [11] where the network displays a
fantastic capability in sparse regression function. Simultane-
ously, we observed, rain streaks emerge a sparse distribution
in an image. In the Eq. (2), we do not specify the rain layer
prior used in conventional prior optimization. We use a deep
convolutional neural network [12, 7, 13] to perform as the
rain layer prior extracting rain layer instead. And Eq. (2) can
be expressed as:
Rp =D(B), Bp=B—Rp. 5)
To make the network more applicable for rain removal, we re-
construct a seven layers network that consists of convolution,
ReLU and batch normalization operation. The input of net-
work is rainy image while label is rain layer. And we use the
images synthetized with data from [14] to train this network.
Updating Bp: There are several models efficient in sim-
ulating natural scene. After network processing, a proximate
rain layer can be obtained, and then utilizing the relationship
between O and B, R, we can formulate a background layer
roughly where evident streaks already have been wiped, only
a little rain streaks remained in formulated background still.
In this occasion, a handy and valid prior is needed to recov-
er a clean background further. In this framework, we employ
a total variation (TV) regularization based image restoration
method [15, 16], in which we embody the prior item with
[[VB]|1. As a result, we turn Eq. (3) into the form as:

Bp = argminp||Bp — Bp|% + pBlVBp[i.  (6)
P

This subproblem removes the trivial rain streaks further and
regains the background with more edges and context informa-
tion. Latent background can be enhanced efficiently.

Updating B, R: According to the Eq. (5)-(6), we can
get the latent results about Bp and Rp. Using L-BFGS al-
gorithm [17, 18] to minimize the constraint Eq. (4) with Bp
and Rp, results of each iteration can be obtained.

To meet the need of solution space, we implement a
project operation shown as Eq. (7) to ensure the estimating
outputs within the scope of §2.

(BT, RY) = Poxa(B,R). @)

Above all, the proposed algorithm has been analyzed and the
whole process is summarized in Alg. 1.

Algorithm 1 Deep Layer Prior Optimization

Input: Input image O, 1B, 7R, pB, Max_iter.
1: Initialization: B + O, R « 0.

2: for k = 1 : max_iter do

3: Update Bp, Rp using Eq. (5)-(6);

4 Update B, R using Eq. (4);

5 Update 1B, 7R, pB;

6: end for

7: Project the results into solution space 2 using Eq. (7).
8: Output: BT, R ™.

3. EXPERIMENTAL RESULTS

We evaluate the performance of our proposed method on both
synthetic datasets and real images, and compare it with state-
of-the-art rain removal approaches, including frequency do-
main decomposition method (SR) [2], discriminative sparse
coding method (DSC) [19], layer prior based method (LP)
[3], layer separation based method (JCAS) [4] and a frequen-
cy domain CNN approach (DerainNet) [1]. As shown in Fig.
2, different values of g, nr have a limited effect on numer-
ical result, thus we choose ng = 0.6,7r = 0.1 as the best
parameters to execute the proposed method.
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Fig. 2. The influence of ng, 7r in our model. We plot curves
of SSIM scores with respect to ng, nr during iterations.

Synthetic Data: Fig. 3 shows visual comparisons for
two examples from Rainl2 database [3]. As observed in fig-
ures and the framed patches, SR [2] and LP [3] tend to over-
smooth the image content, lose detail information seriously.
DSC [19] fails to capture rain streaks, the effect seems not ob-
vious. Compared with the prior methods, DerainNet [1] has a
good performance on reserving background content, however
little rain streaks are still remained in the results. The pro-
posed method removes rain streaks immensely while keep-
ing more image details in the background layer than the other
methods.

Since the ground truth is known, we use the structure sim-
ilarity index (SSIM) [20] for quantitative evaluation, and the
results on SSIM are shown in Table.1. Because we have not
got the code of JCAS [4], numerical results in this table come
from the data in their paper. As can be observed, the high-
est value of SSIM for each image is obtained by our method,
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Ground Truth SR [2]

DSC [19]

LP[3] DerainNet [1]

Fig. 3. Visual comparisons of rain streaks removal on Rainl2 benchmark [3].

Input

SR [2]

DSC [19]

LP [3] DerainNet [1] Ours

Fig. 4. Visual comparisons of rain streaks removal on real images.

Table 1. Quantitative comparison of rain streaks removal results on Raini2 [3] database using SSIM.

7 8 9 [ 10 | 11 | 12 [ Avg

Rainl2 1 2 3 4 5
SR [2] 0.72 | 0.80 | 0.83 | 0.75 | 0.65
DSC [19] 0.84 | 0.86 | 0.73 | 0.95 | 0.92
LP [3] 0.81 | 0.88 | 0.92 | 0.89 | 0.86
JCAS [4] 0.88 | 0.94 | 0.88 | 0.95 | 0.91
DerainNet [1] | 0.90 | 0.93 | 0.92 | 0.98 | 0.94
Ours 091 | 0.96 | 0.93 | 0.98 | 0.95

0.74 | 0.81 | 0.76
093|093 | 0.79 | 0.89 | 0.81 | 0.83 | 0.77
094 | 093 | 0.89 | 0.89 | 0.85 | 0.79 | 0.85 | 0.88
0.94

0.74 | 0.74 | 0.60 | 0.75 | 0.74
0.86

0.96 | 091 | 0.94 | 0.90 | 0.90 | 0.92 | 0.88
097 | 098 | 0.95 | 0.94 | 091 | 091 | 0.93 | 0.94
098 | 0.98 | 0.95 | 0.96 | 0.93 | 0.92 | 0.93 | 0.95

although, there are 4 images in which our method and De-
rainNet [1] hold a draw. In average, our method beats the
DerainNet [1], and exceeds the other methods greatly.

Real Images: Fig. 4 displays the visual results on real im-
ages. Qualitatively, SR [2] seems to over smooth background
and rain streaks also be smoothed. DSC [19] fails in modeling
rain layer, leaving much rain streaks in results. Although LP
[3] has a better performance in removing rain streaks, it has
difficulty in distinguishing rain streaks from object content,
leading to a smooth background. By comparing the two real
results produced by [1], we can summarize that DerainNet [1]
is good at handling the long and thin rain streaks, but short for
the rain column removal. The proposed method achieves the
best visual results on removing visible rain streaks meanwhile
preserves the most detail content. It is worth mentioning that
conventional prior based methods take a large time cost to
formulate rain and background, while in testing phase, our
method is faster than prior methods as we replace the com-
plicated model formulation for rain layer with network. Al-
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though our method takes a little longer than DerainNet [1], it
is worth it from the perspective of effectiveness.

4. CONCLUSIONS

We have introduced a deep layer prior optimization method
to address the problem of single image rain streaks removal.
This method combines deep learning with conventional pri-
or model, utilizing residual networks to extract the intricate
rain layer and using a total variation regularization to enhance
background layer. Compared with prior based methods, the
proposed method has a stronger capacity of distinguishing
rain streaks from background content, reserving more details
in background. And compared with pure network methods,
our method has a good performance in different rainy scenes,
more robust than deep learning methods. The evaluations on
both synthetic data and real images demonstrated that the pro-
posed method achieved significant improvements in terms of
effectiveness and speed, outperformed the state-of-the-arts.
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