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ABSTRACT

In this paper, we propose a novel depth super-resolution
framework with deep edge-inference network and edge-
guided depth filling. We first construct a convolutional neural
network (CNN) architecture to learn a binary map of depth
edge location from low resolution depth map and correspond-
ing color image. Then, a fast edge-guided depth filling strat-
egy is proposed to interpolate the missing depth constrained
by the acquired edges to prevent predicting across the depth
boundaries. Experimental results show that our method out-
performs the state-of-art methods in both the edges inference
and the final results of depth super-resolution, and generalizes
well for handling depth data captured in different scenes.

Index Terms— Super-resolution, depth image, edge-
inference, edge-guided

1. INTRODUCTION

Scene depth perception is one of the most important sources
to understand natural scenes, which becomes the basis of 3D
modeling, 3DTV, autonomous driving, etc [1–3]. However,
the accuracy of depth acquisition are affected due to the com-
plexity of real scenes and the imaging limitation of depth sen-
sors. One of the main degradations of the acquired depth map-
s is low-resolution (LR), which impedes the development of
other depth-based applications. Therefore, effective depth up-
sampling techniques are needed to yield high-resolution (HR)
depth maps recovered from a given LR depth map.

Usually, the basic idea to recover a HR depth map is to use
the corresponding color image captured from the same scene
because of the strong structural correlations between depth
and texture (Fig. 1(a) and (c)). One way is to recast the depth
super-resolution task as a global optimization problem [4–8],
in which, the data term penalizes the difference between the
observation and the recovered depth, while the smooth term
regularizes neighboring pixels based on the designed priors.
However, these methods often use hand-designed objective
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Fig. 1. Depth super-resolution example. (a) Color image;
(b) ground truth (GT) edge map; (c) GT depth map; (d) LR
depth map upsampling by bicubic interpolation; (e) Our in-
ferred edge map; (f) Our upsampled HR depth map.

functions which cannot approach real image priors well and
are typically time-consuming. Another category of depth up-
sampling methods [9–12] uses designed filters to apply joint
filtering on the depth map under guidance of the HR color
image. However, these filtering-based methods cannot pro-
vide enough information to determine the global structure,
and may introduce artifacts in regions where the associated
color image has rich textures.

A promising category is the learning-based methods [13–
15], which learns a relation between LR and HR depth map.
Xie et al. [14] have learned a HR edge map from extract-
ed LR edges using a MRF framework based on the trained
external database of LR-HR edge pairs, and interpolated the
depth values via a modified joint bilateral filter to obtain a
HR depth map. Recently, Li et al. [15] have employed a two-
path convolutional neural network (CNN), to learn a end-to-
end network to obtain the final HR depth map from LR depth
map and the corresponding HR color image. It enjoys a fast
testing speed, and delivers more promising performance than
the above methods. While the CNN-based method [15] yield
powerful representations and are efficient in the evaluation of
the network for given input LR depth data, their training is
often difficult. Since there exist different scene structures in
different training datasets captured by depth sensors, a suffi-
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Fig. 2. Depth super-resolution framework. Only 4× upsamping CNN architecture is presented for saving space.

cient amount of training data needs to be acquired to general-
ize well enough to the test data.

As we observe, depth map mainly contains smooth re-
gions separated by small amounts of edges. Unlike color
image, depth map does not have too much texture informa-
tion, and what really affects the depth quality is the sharp-
ness of depth edges (Fig. 1(b)). Therefore, locating the depth
edges precisely is more important to directly infer the depth
value on each pixel. Motivated by [14], we focus on learn-
ing a binary edge map that indicates the edge location (1 for
valid pixels on edges or 0 otherwise) from the LR depth map
(Fig. 1(e)). Different from [14] that uses hand-crafted corre-
spondence between LR edges and HR edges, we instead em-
ploy the more competing CNN framework to infer an edge
location map from the LR depth map.

Another advantage of constructing an edge-inference C-
NN relates to network training and generalization. Edge map
is presented by binary values, and most pixels are zero due
to the smooth property of the depth signal. Learning a map-
ping from LR depth to binary edge location is much easier
than learning directly from LR depth to HR depth, since the
network does not need to infer the depth value on each pixel
and the relative depth between neighboring pixels. Training a
depth-to-location network is easier converged and faster than
the depth-to-depth one [15]. Therefore, a light-weight net-
work with a small quantity of training data is enough to learn-
ing the mapping, in other word, promoting the performance of
network generalization. Later experiments will validate our
ideas about the generalization of our method.

Following the above analysis, we propose a novel depth
super-resolution framework (Fig. 2) based on a deep edge-
inference network followed by an edge-guided depth filling
process. Firstly, we construct a CNN architecture to learn a
binary map of depth edge location from LR depth map. Then,
an edge-guided depth filling method is carefully designed to
interpolate depth values on the HR image grids constrained
by the acquired edges to prevent predicting across the depth
boundaries. The depth map to be filled is separated into s-
mooth regions and edge regions, and each region uses differ-
ent depth filling strategy to achieve a better depth upsampling

performance and complexity tradeoff. Experimental results
show that our method achieves the state-of-art performance in
both the edges inference and the final results of depth super-
resolution, and generalizes well for handling depth data cap-
tured in various scenes.

2. PROPOSED METHOD

2.1. Deep Edge-Inference Network

As we observe, edges information is of especially importance
in textureless depth map. Therefore, we design a CNN to
learn the HR edge map E from the given LR depth image Dl

and the accompanied HR color image I .
As shown in Fig. 2, our network architecture consists of

two branches, i.e., color branch and depth branch. The col-
or branch acts as a feature extractor to determine informative
edge features from color image. For the depth branch, the
LR depth map Dl is upsampled progressively in S levels to
a desired HR edge map for the upsampling factors 2S . For
example, the depth branch consists of 2 sub-networks for up-
sampling an LR image at a scale factor of 4. At each level,
the depth branch consists of multiple convolutional layers and
one transposed convolutional layer to upsample the extract-
ed features by a scale of 2. The output of each transposed
convolutional layer is connected to a convolutional layer for
extracting features at the finer level. Then, the upsampled fea-
ture maps from depth branch are concatenated with the fea-
ture maps extracted from color branch in the same resolution.
Finally, some convolutional layers are added to extract the fi-
nal HR edge map. A thresholding operation is done on the
network output to get a binarized edge map.

In the implementation, each convolutional layer consists
of 32 filters with the size of 3×3. All the convolutional and
transposed convolutional layers (except the top layer) are fol-
lowed by ReLU activation function. The skip structure [16]
is used in both depth branch and color branch to accelerate
the training process. We learn the network parameters θ by
minimizing the L2 loss ||f(Dl, I, θ) − Egt||22 , where f is
the mapping function, and Egt is the ground truth (GT) edge
map extracted from GT depth map by canny operator.
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Fig. 3. Illustration of different situations of intersection be-
tween the path S (Green) and the depth edge (Black). (a) No
intersection; (b-d) All the three different intersection modes.

2.2. Edge-Guided Depth Filling

To our best knowledge, depth map contains large quantities of
smooth regions. Therefore, we do not need to design a sophis-
ticated filtering algorithm in dealing with these textureless re-
gions. More attention should be paid to the regions around
edges. As shown in Fig. 2, we first dilate the inferred edge
map E to get an binary mask, which can effectively separate
the depth map into smooth region and edge region. Then, for
the smooth region, depth values are directly copied from the
LR depth map interpolated by bicubic. For the edge regions,
we design a depth filling method with a new edge constraint
strategy in the following:

We upsample the LR Depth map Dl to the resolution of
HR color image I by filling zeros, and interpolate missing
depth values on the HR image grids. For each pixel x in the
target HR depth map D, its depth Dx is estimated via an joint
bilateral filter:

Dx =
1

K

∑
y∈N (x)

Gσ (Ix − Iy) 1(x, y;E)Dy, (1)

where G(·) is the Gaussian kernel with subscript σ as its s-
tandard deviation to adjust color difference. K is the normal-
ization factor. N (x) is the neighborhood of pixel x. 1(·) is
a binary indicator that replacing the range kernel, which indi-
cates whether the pixel x and y are the same side of an depth
edge. Only pixels at the same side of the edge with x are con-
sidered as candidates during averaging to prevent predicting
across depth edges. Note that, with the guidance of edge map
E, a large neighborhood is unnecessary, and contributes little
to the estimation of x, which also increases the computational
complexity. So we adopt a neighborhood containing four n-
earest valid pixels around the centering pixel x acquired from
LR depth map Dl.

To determine the relationship between the pixel x and y,
we link x and y by computing the line path S between the
two pixels. If no intersection between the path S and the edge
(Fig. 3(a)), y can be regarded as a candidate and the binary
indicator 1(·) are set at one. Otherwise, we judge x and y
at different side of the edge when encountering the overlap
case in Fig. 3(b) and other two cross cases in Fig. 3(c)(d), and
therefore exclude y by setting the indicator to zero.

Statistically, about 3% pixels of a depth map are selected
into the edge region to be filled by our edge-guided filtering s-
trategy, while most pixels are directly copying from LR depth

map. Besides, different from [14] that constructs a compli-
cated graph on a large neighborhood to determine the pixels
relationship, our algorithm achieves a comparable depth fill-
ing results with [14], but a much faster running speed.

3. EXPERIMENTAL RESULTS

Our proposed method is evaluated on the performance of in-
ferred edges, depth super-resolution, and network general-
ization, separately. To train our network, we use 38 RGB-
D images for training and 6 for validation (Art, Book, Moe-
bius, Reindeer, Laundry, and Dolls) from Middlebury dataset
[17]. We randomly extract 13860 depth patches of a fixed
size 15×15 from downsampled depth map, and correspond-
ing color patches and edge patches of the squared size 30,
60, 120, and 240 according to 2, 4, 8, and 16 upsamping fac-
tors respectively. We train our model with the MatConvNet
toolbox. The learning rate is initialized to 1e-3 for all layers
and decreased by a factor of 2, 5, and 10 for every 50 epochs
progressively. Besides, the depth filling parameter σ is set to
be 3. Mean absolute difference (MAD) is used for objective
evaluation on the result of depth super-resolution.

3.1. Evaluation on the Performance of Inferred Edges

Fig. 4. Edge extraction and upsampling results from 4× L-
R depth. (a) LR depth upsampling by bicubic and GT; (b)
EG [14] (MAD: 1.01); (c) Canny operator + our depth filling
strategy (MAD: 0.79); (d) Ours (MAD: 0.61).

Fig. 4 shows the inferred edges and the final depth filling
results from 4× downsampling depth map. We compare with
the recent edge-guided method (EG) [14], and the method us-
ing canny operator to extract edges plus our depth filling s-
trategy to obtain the final HR depth map. Result shows that
we extract the most accurate and thin depth edges, while EG
presents wider predicted edges than ours, and the edge ex-
tracted by canny operator is inclined to distort influenced by
the blurry edges from LR depth map. Besides, the upsam-
pling result also demonstrates our superior performance (the
lowest MAD, 0.61) on edge prediction.
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Table 1. Quantitative depth upsampling results on Middlebury datasets at four subsamping rate.
Art Book Dolls Moebius Laundry Reindeer 

2  4  8  16  2  4  8  16  2  4  8  16  2  4  8  16  2  4  8  16  2  4  8  16  

TGV[6] 0.45 0.65 1.17 2.30 0.18 0.27 0.42 0.82 0.21 0.33  0.70  2.20 0.18 0.29 0.49 0.90 0.31 0.55 1.22 3.37 0.32 0.49 1.03 3.05 

AR[7] 0.18 0.49 0.64 2.01 0.12 0.22 0.37 0.78 0.21 0.34  0.50  0.82 0.10 0.20 0.40 0.79 0.20 0.34 0.53 1.12 0.22 0.40 0.58 1.00 

FGI[8] 0.70 1.29 2.41 4.51 0.43 0.74 1.16 1.91 0.54 0.93  1.44  2.12 0.51 0.91 1.59 2.68 0.42 0.72 1.13 1.81 0.50 0.87 1.58 2.72 

JGF[11] 0.29 0.47 0.78 1.54 0.15 0.24 0.43 0.81 0.19 0.33  0.59  1.06 0.15 0.25 0.46 0.80 0.21 0.36 0.64 1.20 0.23 0.38 0.64 1.09 

EG[14] - 0.64 - - - 0.28 - - - 0.33 - - - 0.37 - - - 0.29 - - - 0.40 - - 

DJF[15] 0.12 0.40 1.07 2.78 0.05 0.16 0.45 1.00 0.06 0.20  0.49  0.99 0.07 0.28 0.71 1.67 0.06 0.18 0.46 1.02 0.07 0.23 0.60 1.36 

Ours 0.23 0.40 0.64 1.34 0.12 0.22 0.37 0.78 0.12 0.22  0.38  0.73 0.13 0.23 0.36 0.81 0.11 0.20 0.35 0.73 0.15 0.26 0.40 0.80 

Table 2. Quantitative depth upsampling results on chosen depth frames from MPI datasets at four subsamping rate.
Alley_1-48 Ambush_2-15 Ambush_4-12 Ambush_5-41 Temple_3-23 

2  4  8  16  2  4  8  16  2  4  8  16  2  4  8  16  2  4  8  16  

EG[14] - 0.23 - - - 0.28 - - - 0.76 - - - 0.88 - - - 0.54 - - 

DJF[15] 0.07 0.17 0.46 0.90 0.06 0.20 0.48 0.96 0.21 0.54 1.14 2.49 0.28 0.72 1.42 2.67 0.15 0.40 0.79 1.76 

Ours 0.08 0.13 0.23 0.43 0.09 0.15 0.28 0.54 0.25 0.50  0.82  1.76 0.24 0.41 0.69 1.32 0.17 0.30 0.51 1.12 

3.2. Results on Depth Super-Resolution

Depth Upsampling results on the six testing datasets are
shown in Table 1. Our method is compared with six state-of-
the-art methods, i.e., total generalized variation (TGV) [6],
auto-regressive (AR) [7], fast global interpolation (FGI) [8],
joint geodesic filtering (JGF) [11], and edge-guided method
(EG) [14], and deep joint filtering (DJF) [15]. We use the
same training data with ours to train the network from D-
JF. Our method nearly obtains the lowest MAD for 8× and
16× rates, while DJF provides better results for 2× and 4×
upsampling rates. This explains that a end-to-end trained
network [15] specializes in inferring HR depth for lower
upsampling rates, but fails to reverse the process of down-
sampling degradation for high upsampling rates from the
seriously blurry depth map. Visual results in Fig. 5 also
demonstrate this, i.e., large areas of ringing artifacts appear
around the depth edges for 8× upsampling rate.

(a) (b) (c)

Fig. 5. Upsampling results from 8× LR depth map. (a) GT;
(b) DJF [15]; (c) Ours.

3.3. Evaluation on the Generalization of Our Framework

To test the generalization of our framework, we choose five
depth maps from another depth dataset, i.e., MPI Sintel

dataset [18], to validate stronger generalization of our method
than DJF [15] that uses depth-to-depth training mode. Note
that we use Middleburry dataset to train the both methods,
but test on MPI dataset which contains totally different scene
structures from Middlebury dataset. Table 2 shows that the
quantitative results of our method are far better than DJF for
4×, 8× and 16× subsampling rates, which demonstrates that
learning a mapping from LR edges to binary edges location
is the critical factor that promotes the network generalization.
Visual results in Fig. 6 also validates this, i.e., DJF generates
blurry results than ours.

(a) (c)(b)

Fig. 6. Evaluation on network generalization. (a) GT; 8×
upsampling results: (b) DJF [15] and (c) Ours.

4. CONCLUSION

This paper proposes a novel depth super-resolution frame-
work with deep edge-inference network and edge-guided
depth filling. We first construct a CNN architecture to learn
the depth edge location from LR depth map. Then, a fast
edge-guided depth filling strategy is proposed to interpolate
the missing depth. Experimental results show that our method
outperforms the state-of-art methods in both the edges infer-
ence and depth super-resolution, and generalizes well for
handling diverse depth datasets.
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